summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/poly1305/sum_s390x.s
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/poly1305/sum_s390x.s')
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_s390x.s504
1 files changed, 0 insertions, 504 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s
deleted file mode 100644
index 69c64f84..00000000
--- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s
+++ /dev/null
@@ -1,504 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-//go:build gc && !purego
-// +build gc,!purego
-
-#include "textflag.h"
-
-// This implementation of Poly1305 uses the vector facility (vx)
-// to process up to 2 blocks (32 bytes) per iteration using an
-// algorithm based on the one described in:
-//
-// NEON crypto, Daniel J. Bernstein & Peter Schwabe
-// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
-//
-// This algorithm uses 5 26-bit limbs to represent a 130-bit
-// value. These limbs are, for the most part, zero extended and
-// placed into 64-bit vector register elements. Each vector
-// register is 128-bits wide and so holds 2 of these elements.
-// Using 26-bit limbs allows us plenty of headroom to accomodate
-// accumulations before and after multiplication without
-// overflowing either 32-bits (before multiplication) or 64-bits
-// (after multiplication).
-//
-// In order to parallelise the operations required to calculate
-// the sum we use two separate accumulators and then sum those
-// in an extra final step. For compatibility with the generic
-// implementation we perform this summation at the end of every
-// updateVX call.
-//
-// To use two accumulators we must multiply the message blocks
-// by r² rather than r. Only the final message block should be
-// multiplied by r.
-//
-// Example:
-//
-// We want to calculate the sum (h) for a 64 byte message (m):
-//
-// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
-//
-// To do this we split the calculation into the even indices
-// and odd indices of the message. These form our SIMD 'lanes':
-//
-// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0
-// m[16:32]r³ + m[48:64]r <- lane 1
-//
-// To calculate this iteratively we refactor so that both lanes
-// are written in terms of r² and r:
-//
-// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
-// (m[16:32]r² + m[48:64])r <- lane 1
-// ^ ^
-// | coefficients for second iteration
-// coefficients for first iteration
-//
-// So in this case we would have two iterations. In the first
-// both lanes are multiplied by r². In the second only the
-// first lane is multiplied by r² and the second lane is
-// instead multiplied by r. This gives use the odd and even
-// powers of r that we need from the original equation.
-//
-// Notation:
-//
-// h - accumulator
-// r - key
-// m - message
-//
-// [a, b] - SIMD register holding two 64-bit values
-// [a, b, c, d] - SIMD register holding four 32-bit values
-// xᵢ[n] - limb n of variable x with bit width i
-//
-// Limbs are expressed in little endian order, so for 26-bit
-// limbs x₂₆[4] will be the most significant limb and x₂₆[0]
-// will be the least significant limb.
-
-// masking constants
-#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
-#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
-
-// expansion constants (see EXPAND macro)
-#define EX0 V2
-#define EX1 V3
-#define EX2 V4
-
-// key (r², r or 1 depending on context)
-#define R_0 V5
-#define R_1 V6
-#define R_2 V7
-#define R_3 V8
-#define R_4 V9
-
-// precalculated coefficients (5r², 5r or 0 depending on context)
-#define R5_1 V10
-#define R5_2 V11
-#define R5_3 V12
-#define R5_4 V13
-
-// message block (m)
-#define M_0 V14
-#define M_1 V15
-#define M_2 V16
-#define M_3 V17
-#define M_4 V18
-
-// accumulator (h)
-#define H_0 V19
-#define H_1 V20
-#define H_2 V21
-#define H_3 V22
-#define H_4 V23
-
-// temporary registers (for short-lived values)
-#define T_0 V24
-#define T_1 V25
-#define T_2 V26
-#define T_3 V27
-#define T_4 V28
-
-GLOBL ·constants<>(SB), RODATA, $0x30
-// EX0
-DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
-DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
-// EX1
-DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
-DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
-// EX2
-DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
-DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
-
-// MULTIPLY multiplies each lane of f and g, partially reduced
-// modulo 2¹³⁰ - 5. The result, h, consists of partial products
-// in each lane that need to be reduced further to produce the
-// final result.
-//
-// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
-//
-// Note that the multiplication by 5 of the high bits is
-// achieved by precalculating the multiplication of four of the
-// g coefficients by 5. These are g51-g54.
-#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
- VMLOF f0, g0, h0 \
- VMLOF f0, g3, h3 \
- VMLOF f0, g1, h1 \
- VMLOF f0, g4, h4 \
- VMLOF f0, g2, h2 \
- VMLOF f1, g54, T_0 \
- VMLOF f1, g2, T_3 \
- VMLOF f1, g0, T_1 \
- VMLOF f1, g3, T_4 \
- VMLOF f1, g1, T_2 \
- VMALOF f2, g53, h0, h0 \
- VMALOF f2, g1, h3, h3 \
- VMALOF f2, g54, h1, h1 \
- VMALOF f2, g2, h4, h4 \
- VMALOF f2, g0, h2, h2 \
- VMALOF f3, g52, T_0, T_0 \
- VMALOF f3, g0, T_3, T_3 \
- VMALOF f3, g53, T_1, T_1 \
- VMALOF f3, g1, T_4, T_4 \
- VMALOF f3, g54, T_2, T_2 \
- VMALOF f4, g51, h0, h0 \
- VMALOF f4, g54, h3, h3 \
- VMALOF f4, g52, h1, h1 \
- VMALOF f4, g0, h4, h4 \
- VMALOF f4, g53, h2, h2 \
- VAG T_0, h0, h0 \
- VAG T_3, h3, h3 \
- VAG T_1, h1, h1 \
- VAG T_4, h4, h4 \
- VAG T_2, h2, h2
-
-// REDUCE performs the following carry operations in four
-// stages, as specified in Bernstein & Schwabe:
-//
-// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
-// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
-// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
-// 4: h₂₆[3]->h₂₆[4]
-//
-// The result is that all of the limbs are limited to 26-bits
-// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
-//
-// Note that although each limb is aligned at 26-bit intervals
-// they may contain values that exceed 2²⁶ - 1, hence the need
-// to carry the excess bits in each limb.
-#define REDUCE(h0, h1, h2, h3, h4) \
- VESRLG $26, h0, T_0 \
- VESRLG $26, h3, T_1 \
- VN MOD26, h0, h0 \
- VN MOD26, h3, h3 \
- VAG T_0, h1, h1 \
- VAG T_1, h4, h4 \
- VESRLG $26, h1, T_2 \
- VESRLG $26, h4, T_3 \
- VN MOD26, h1, h1 \
- VN MOD26, h4, h4 \
- VESLG $2, T_3, T_4 \
- VAG T_3, T_4, T_4 \
- VAG T_2, h2, h2 \
- VAG T_4, h0, h0 \
- VESRLG $26, h2, T_0 \
- VESRLG $26, h0, T_1 \
- VN MOD26, h2, h2 \
- VN MOD26, h0, h0 \
- VAG T_0, h3, h3 \
- VAG T_1, h1, h1 \
- VESRLG $26, h3, T_2 \
- VN MOD26, h3, h3 \
- VAG T_2, h4, h4
-
-// EXPAND splits the 128-bit little-endian values in0 and in1
-// into 26-bit big-endian limbs and places the results into
-// the first and second lane of d₂₆[0:4] respectively.
-//
-// The EX0, EX1 and EX2 constants are arrays of byte indices
-// for permutation. The permutation both reverses the bytes
-// in the input and ensures the bytes are copied into the
-// destination limb ready to be shifted into their final
-// position.
-#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
- VPERM in0, in1, EX0, d0 \
- VPERM in0, in1, EX1, d2 \
- VPERM in0, in1, EX2, d4 \
- VESRLG $26, d0, d1 \
- VESRLG $30, d2, d3 \
- VESRLG $4, d2, d2 \
- VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]]
- VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]]
- VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]]
- VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]]
- VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]]
-
-// func updateVX(state *macState, msg []byte)
-TEXT ·updateVX(SB), NOSPLIT, $0
- MOVD state+0(FP), R1
- LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
-
- // load EX0, EX1 and EX2
- MOVD $·constants<>(SB), R5
- VLM (R5), EX0, EX2
-
- // generate masks
- VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
- VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
-
- // load h (accumulator) and r (key) from state
- VZERO T_1 // [0, 0]
- VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]]
- VLEG $0, 16(R1), T_1 // [h₆₄[2], 0]
- VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]]
- VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
- VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]
-
- // unpack h and r into 26-bit limbs
- // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
- VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]]
- VZERO H_1 // [0, 0]
- VZERO H_3 // [0, 0]
- VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
- VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0]
- VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]]
- VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only
- VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]]
- VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only
- VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete
- VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete
-
- // replicate r across all 4 vector elements
- VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
- VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
- VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
- VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
- VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]
-
- // zero out lane 1 of h
- VLEIG $1, $0, H_0 // [h₂₆[0], 0]
- VLEIG $1, $0, H_1 // [h₂₆[1], 0]
- VLEIG $1, $0, H_2 // [h₂₆[2], 0]
- VLEIG $1, $0, H_3 // [h₂₆[3], 0]
- VLEIG $1, $0, H_4 // [h₂₆[4], 0]
-
- // calculate 5r (ignore least significant limb)
- VREPIF $5, T_0
- VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
- VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
- VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
- VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]
-
- // skip r² calculation if we are only calculating one block
- CMPBLE R3, $16, skip
-
- // calculate r²
- MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
- REDUCE(M_0, M_1, M_2, M_3, M_4)
- VGBM $0x0f0f, T_0
- VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
- VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
- VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
- VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
- VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]
-
- // calculate 5r² (ignore least significant limb)
- VREPIF $5, T_0
- VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
- VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
- VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
- VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]
-
-loop:
- CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
-
- // load next 2 blocks from message
- VLM (R2), T_0, T_1
-
- // update message slice
- SUB $32, R3
- MOVD $32(R2), R2
-
- // unpack message blocks into 26-bit big-endian limbs
- EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
-
- // add 2¹²⁸ to each message block value
- VLEIB $4, $1, M_4
- VLEIB $12, $1, M_4
-
-multiply:
- // accumulate the incoming message
- VAG H_0, M_0, M_0
- VAG H_3, M_3, M_3
- VAG H_1, M_1, M_1
- VAG H_4, M_4, M_4
- VAG H_2, M_2, M_2
-
- // multiply the accumulator by the key coefficient
- MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
-
- // carry and partially reduce the partial products
- REDUCE(H_0, H_1, H_2, H_3, H_4)
-
- CMPBNE R3, $0, loop
-
-finish:
- // sum lane 0 and lane 1 and put the result in lane 1
- VZERO T_0
- VSUMQG H_0, T_0, H_0
- VSUMQG H_3, T_0, H_3
- VSUMQG H_1, T_0, H_1
- VSUMQG H_4, T_0, H_4
- VSUMQG H_2, T_0, H_2
-
- // reduce again after summation
- // TODO(mundaym): there might be a more efficient way to do this
- // now that we only have 1 active lane. For example, we could
- // simultaneously pack the values as we reduce them.
- REDUCE(H_0, H_1, H_2, H_3, H_4)
-
- // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
- // TODO(mundaym): in testing this final carry was unnecessary.
- // Needs a proof before it can be removed though.
- VESRLG $26, H_1, T_1
- VN MOD26, H_1, H_1
- VAQ T_1, H_2, H_2
- VESRLG $26, H_2, T_2
- VN MOD26, H_2, H_2
- VAQ T_2, H_3, H_3
- VESRLG $26, H_3, T_3
- VN MOD26, H_3, H_3
- VAQ T_3, H_4, H_4
-
- // h is now < 2(2¹³⁰ - 5)
- // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
- VESLG $26, H_1, H_1
- VESLG $26, H_3, H_3
- VO H_0, H_1, H_0
- VO H_2, H_3, H_2
- VESLG $4, H_2, H_2
- VLEIB $7, $48, H_1
- VSLB H_1, H_2, H_2
- VO H_0, H_2, H_0
- VLEIB $7, $104, H_1
- VSLB H_1, H_4, H_3
- VO H_3, H_0, H_0
- VLEIB $7, $24, H_1
- VSRLB H_1, H_4, H_1
-
- // update state
- VSTEG $1, H_0, 0(R1)
- VSTEG $0, H_0, 8(R1)
- VSTEG $1, H_1, 16(R1)
- RET
-
-b2: // 2 or fewer blocks remaining
- CMPBLE R3, $16, b1
-
- // Load the 2 remaining blocks (17-32 bytes remaining).
- MOVD $-17(R3), R0 // index of final byte to load modulo 16
- VL (R2), T_0 // load full 16 byte block
- VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
-
- // The Poly1305 algorithm requires that a 1 bit be appended to
- // each message block. If the final block is less than 16 bytes
- // long then it is easiest to insert the 1 before the message
- // block is split into 26-bit limbs. If, on the other hand, the
- // final message block is 16 bytes long then we append the 1 bit
- // after expansion as normal.
- MOVBZ $1, R0
- MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16)
- CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
- VLVGB R3, R0, T_1 // insert 1 into the byte at index R3
-
- // Split both blocks into 26-bit limbs in the appropriate lanes.
- EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
-
- // Append a 1 byte to the end of the second to last block.
- VLEIB $4, $1, M_4
-
- // Append a 1 byte to the end of the last block only if it is a
- // full 16 byte block.
- CMPBNE R3, $16, 2(PC)
- VLEIB $12, $1, M_4
-
- // Finally, set up the coefficients for the final multiplication.
- // We have previously saved r and 5r in the 32-bit even indexes
- // of the R_[0-4] and R5_[1-4] coefficient registers.
- //
- // We want lane 0 to be multiplied by r² so that can be kept the
- // same. We want lane 1 to be multiplied by r so we need to move
- // the saved r value into the 32-bit odd index in lane 1 by
- // rotating the 64-bit lane by 32.
- VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only
- VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]]
- VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]]
- VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]]
- VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]]
- VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]]
- VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
- VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
- VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
- VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]
-
- MOVD $0, R3
- BR multiply
-
-skip:
- CMPBEQ R3, $0, finish
-
-b1: // 1 block remaining
-
- // Load the final block (1-16 bytes). This will be placed into
- // lane 0.
- MOVD $-1(R3), R0
- VLL R0, (R2), T_0 // pad to 16 bytes with zeros
-
- // The Poly1305 algorithm requires that a 1 bit be appended to
- // each message block. If the final block is less than 16 bytes
- // long then it is easiest to insert the 1 before the message
- // block is split into 26-bit limbs. If, on the other hand, the
- // final message block is 16 bytes long then we append the 1 bit
- // after expansion as normal.
- MOVBZ $1, R0
- CMPBEQ R3, $16, 2(PC)
- VLVGB R3, R0, T_0
-
- // Set the message block in lane 1 to the value 0 so that it
- // can be accumulated without affecting the final result.
- VZERO T_1
-
- // Split the final message block into 26-bit limbs in lane 0.
- // Lane 1 will be contain 0.
- EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
-
- // Append a 1 byte to the end of the last block only if it is a
- // full 16 byte block.
- CMPBNE R3, $16, 2(PC)
- VLEIB $4, $1, M_4
-
- // We have previously saved r and 5r in the 32-bit even indexes
- // of the R_[0-4] and R5_[1-4] coefficient registers.
- //
- // We want lane 0 to be multiplied by r so we need to move the
- // saved r value into the 32-bit odd index in lane 0. We want
- // lane 1 to be set to the value 1. This makes multiplication
- // a no-op. We do this by setting lane 1 in every register to 0
- // and then just setting the 32-bit index 3 in R_0 to 1.
- VZERO T_0
- MOVD $0, R0
- MOVD $0x10111213, R12
- VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000]
- VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0]
- VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0]
- VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0]
- VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0]
- VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0]
- VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
- VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
- VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
- VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]
-
- // Set the value of lane 1 to be 1.
- VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1]
-
- MOVD $0, R3
- BR multiply