diff options
author | Wim <wim@42.be> | 2021-12-12 00:05:15 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-12-12 00:05:15 +0100 |
commit | 3893a035be347a7687a41d2054dd1b274d3a0504 (patch) | |
tree | dfe4a3bf72a0a6356e51bd8fc2e88e9a26e52331 /vendor/golang.org/x/crypto/poly1305/sum_s390x.s | |
parent | 658bdd9faa835660ae407331732e9d93d8f6443b (diff) | |
download | matterbridge-msglm-3893a035be347a7687a41d2054dd1b274d3a0504.tar.gz matterbridge-msglm-3893a035be347a7687a41d2054dd1b274d3a0504.tar.bz2 matterbridge-msglm-3893a035be347a7687a41d2054dd1b274d3a0504.zip |
Update dependencies/vendor (#1659)
Diffstat (limited to 'vendor/golang.org/x/crypto/poly1305/sum_s390x.s')
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_s390x.s | 504 |
1 files changed, 0 insertions, 504 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s deleted file mode 100644 index 69c64f84..00000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s +++ /dev/null @@ -1,504 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:build gc && !purego -// +build gc,!purego - -#include "textflag.h" - -// This implementation of Poly1305 uses the vector facility (vx) -// to process up to 2 blocks (32 bytes) per iteration using an -// algorithm based on the one described in: -// -// NEON crypto, Daniel J. Bernstein & Peter Schwabe -// https://cryptojedi.org/papers/neoncrypto-20120320.pdf -// -// This algorithm uses 5 26-bit limbs to represent a 130-bit -// value. These limbs are, for the most part, zero extended and -// placed into 64-bit vector register elements. Each vector -// register is 128-bits wide and so holds 2 of these elements. -// Using 26-bit limbs allows us plenty of headroom to accomodate -// accumulations before and after multiplication without -// overflowing either 32-bits (before multiplication) or 64-bits -// (after multiplication). -// -// In order to parallelise the operations required to calculate -// the sum we use two separate accumulators and then sum those -// in an extra final step. For compatibility with the generic -// implementation we perform this summation at the end of every -// updateVX call. -// -// To use two accumulators we must multiply the message blocks -// by r² rather than r. Only the final message block should be -// multiplied by r. -// -// Example: -// -// We want to calculate the sum (h) for a 64 byte message (m): -// -// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r -// -// To do this we split the calculation into the even indices -// and odd indices of the message. These form our SIMD 'lanes': -// -// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0 -// m[16:32]r³ + m[48:64]r <- lane 1 -// -// To calculate this iteratively we refactor so that both lanes -// are written in terms of r² and r: -// -// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0 -// (m[16:32]r² + m[48:64])r <- lane 1 -// ^ ^ -// | coefficients for second iteration -// coefficients for first iteration -// -// So in this case we would have two iterations. In the first -// both lanes are multiplied by r². In the second only the -// first lane is multiplied by r² and the second lane is -// instead multiplied by r. This gives use the odd and even -// powers of r that we need from the original equation. -// -// Notation: -// -// h - accumulator -// r - key -// m - message -// -// [a, b] - SIMD register holding two 64-bit values -// [a, b, c, d] - SIMD register holding four 32-bit values -// xᵢ[n] - limb n of variable x with bit width i -// -// Limbs are expressed in little endian order, so for 26-bit -// limbs x₂₆[4] will be the most significant limb and x₂₆[0] -// will be the least significant limb. - -// masking constants -#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits -#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits - -// expansion constants (see EXPAND macro) -#define EX0 V2 -#define EX1 V3 -#define EX2 V4 - -// key (r², r or 1 depending on context) -#define R_0 V5 -#define R_1 V6 -#define R_2 V7 -#define R_3 V8 -#define R_4 V9 - -// precalculated coefficients (5r², 5r or 0 depending on context) -#define R5_1 V10 -#define R5_2 V11 -#define R5_3 V12 -#define R5_4 V13 - -// message block (m) -#define M_0 V14 -#define M_1 V15 -#define M_2 V16 -#define M_3 V17 -#define M_4 V18 - -// accumulator (h) -#define H_0 V19 -#define H_1 V20 -#define H_2 V21 -#define H_3 V22 -#define H_4 V23 - -// temporary registers (for short-lived values) -#define T_0 V24 -#define T_1 V25 -#define T_2 V26 -#define T_3 V27 -#define T_4 V28 - -GLOBL ·constants<>(SB), RODATA, $0x30 -// EX0 -DATA ·constants<>+0x00(SB)/8, $0x0006050403020100 -DATA ·constants<>+0x08(SB)/8, $0x1016151413121110 -// EX1 -DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706 -DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716 -// EX2 -DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d -DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d - -// MULTIPLY multiplies each lane of f and g, partially reduced -// modulo 2¹³⁰ - 5. The result, h, consists of partial products -// in each lane that need to be reduced further to produce the -// final result. -// -// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰ -// -// Note that the multiplication by 5 of the high bits is -// achieved by precalculating the multiplication of four of the -// g coefficients by 5. These are g51-g54. -#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ - VMLOF f0, g0, h0 \ - VMLOF f0, g3, h3 \ - VMLOF f0, g1, h1 \ - VMLOF f0, g4, h4 \ - VMLOF f0, g2, h2 \ - VMLOF f1, g54, T_0 \ - VMLOF f1, g2, T_3 \ - VMLOF f1, g0, T_1 \ - VMLOF f1, g3, T_4 \ - VMLOF f1, g1, T_2 \ - VMALOF f2, g53, h0, h0 \ - VMALOF f2, g1, h3, h3 \ - VMALOF f2, g54, h1, h1 \ - VMALOF f2, g2, h4, h4 \ - VMALOF f2, g0, h2, h2 \ - VMALOF f3, g52, T_0, T_0 \ - VMALOF f3, g0, T_3, T_3 \ - VMALOF f3, g53, T_1, T_1 \ - VMALOF f3, g1, T_4, T_4 \ - VMALOF f3, g54, T_2, T_2 \ - VMALOF f4, g51, h0, h0 \ - VMALOF f4, g54, h3, h3 \ - VMALOF f4, g52, h1, h1 \ - VMALOF f4, g0, h4, h4 \ - VMALOF f4, g53, h2, h2 \ - VAG T_0, h0, h0 \ - VAG T_3, h3, h3 \ - VAG T_1, h1, h1 \ - VAG T_4, h4, h4 \ - VAG T_2, h2, h2 - -// REDUCE performs the following carry operations in four -// stages, as specified in Bernstein & Schwabe: -// -// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4] -// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0] -// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3] -// 4: h₂₆[3]->h₂₆[4] -// -// The result is that all of the limbs are limited to 26-bits -// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits. -// -// Note that although each limb is aligned at 26-bit intervals -// they may contain values that exceed 2²⁶ - 1, hence the need -// to carry the excess bits in each limb. -#define REDUCE(h0, h1, h2, h3, h4) \ - VESRLG $26, h0, T_0 \ - VESRLG $26, h3, T_1 \ - VN MOD26, h0, h0 \ - VN MOD26, h3, h3 \ - VAG T_0, h1, h1 \ - VAG T_1, h4, h4 \ - VESRLG $26, h1, T_2 \ - VESRLG $26, h4, T_3 \ - VN MOD26, h1, h1 \ - VN MOD26, h4, h4 \ - VESLG $2, T_3, T_4 \ - VAG T_3, T_4, T_4 \ - VAG T_2, h2, h2 \ - VAG T_4, h0, h0 \ - VESRLG $26, h2, T_0 \ - VESRLG $26, h0, T_1 \ - VN MOD26, h2, h2 \ - VN MOD26, h0, h0 \ - VAG T_0, h3, h3 \ - VAG T_1, h1, h1 \ - VESRLG $26, h3, T_2 \ - VN MOD26, h3, h3 \ - VAG T_2, h4, h4 - -// EXPAND splits the 128-bit little-endian values in0 and in1 -// into 26-bit big-endian limbs and places the results into -// the first and second lane of d₂₆[0:4] respectively. -// -// The EX0, EX1 and EX2 constants are arrays of byte indices -// for permutation. The permutation both reverses the bytes -// in the input and ensures the bytes are copied into the -// destination limb ready to be shifted into their final -// position. -#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ - VPERM in0, in1, EX0, d0 \ - VPERM in0, in1, EX1, d2 \ - VPERM in0, in1, EX2, d4 \ - VESRLG $26, d0, d1 \ - VESRLG $30, d2, d3 \ - VESRLG $4, d2, d2 \ - VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]] - VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]] - VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]] - VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]] - VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]] - -// func updateVX(state *macState, msg []byte) -TEXT ·updateVX(SB), NOSPLIT, $0 - MOVD state+0(FP), R1 - LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len - - // load EX0, EX1 and EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 - - // generate masks - VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff] - VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff] - - // load h (accumulator) and r (key) from state - VZERO T_1 // [0, 0] - VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]] - VLEG $0, 16(R1), T_1 // [h₆₄[2], 0] - VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]] - VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]] - VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]] - - // unpack h and r into 26-bit limbs - // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value - VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]] - VZERO H_1 // [0, 0] - VZERO H_3 // [0, 0] - VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out - VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0] - VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]] - VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only - VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]] - VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only - VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete - VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete - - // replicate r across all 4 vector elements - VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]] - VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]] - VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]] - VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]] - VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]] - - // zero out lane 1 of h - VLEIG $1, $0, H_0 // [h₂₆[0], 0] - VLEIG $1, $0, H_1 // [h₂₆[1], 0] - VLEIG $1, $0, H_2 // [h₂₆[2], 0] - VLEIG $1, $0, H_3 // [h₂₆[3], 0] - VLEIG $1, $0, H_4 // [h₂₆[4], 0] - - // calculate 5r (ignore least significant limb) - VREPIF $5, T_0 - VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]] - VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]] - VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]] - VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]] - - // skip r² calculation if we are only calculating one block - CMPBLE R3, $16, skip - - // calculate r² - MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4) - REDUCE(M_0, M_1, M_2, M_3, M_4) - VGBM $0x0f0f, T_0 - VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]] - VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]] - VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]] - VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]] - VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]] - - // calculate 5r² (ignore least significant limb) - VREPIF $5, T_0 - VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]] - VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]] - VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]] - VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]] - -loop: - CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients - - // load next 2 blocks from message - VLM (R2), T_0, T_1 - - // update message slice - SUB $32, R3 - MOVD $32(R2), R2 - - // unpack message blocks into 26-bit big-endian limbs - EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) - - // add 2¹²⁸ to each message block value - VLEIB $4, $1, M_4 - VLEIB $12, $1, M_4 - -multiply: - // accumulate the incoming message - VAG H_0, M_0, M_0 - VAG H_3, M_3, M_3 - VAG H_1, M_1, M_1 - VAG H_4, M_4, M_4 - VAG H_2, M_2, M_2 - - // multiply the accumulator by the key coefficient - MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) - - // carry and partially reduce the partial products - REDUCE(H_0, H_1, H_2, H_3, H_4) - - CMPBNE R3, $0, loop - -finish: - // sum lane 0 and lane 1 and put the result in lane 1 - VZERO T_0 - VSUMQG H_0, T_0, H_0 - VSUMQG H_3, T_0, H_3 - VSUMQG H_1, T_0, H_1 - VSUMQG H_4, T_0, H_4 - VSUMQG H_2, T_0, H_2 - - // reduce again after summation - // TODO(mundaym): there might be a more efficient way to do this - // now that we only have 1 active lane. For example, we could - // simultaneously pack the values as we reduce them. - REDUCE(H_0, H_1, H_2, H_3, H_4) - - // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1 - // TODO(mundaym): in testing this final carry was unnecessary. - // Needs a proof before it can be removed though. - VESRLG $26, H_1, T_1 - VN MOD26, H_1, H_1 - VAQ T_1, H_2, H_2 - VESRLG $26, H_2, T_2 - VN MOD26, H_2, H_2 - VAQ T_2, H_3, H_3 - VESRLG $26, H_3, T_3 - VN MOD26, H_3, H_3 - VAQ T_3, H_4, H_4 - - // h is now < 2(2¹³⁰ - 5) - // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1]. - VESLG $26, H_1, H_1 - VESLG $26, H_3, H_3 - VO H_0, H_1, H_0 - VO H_2, H_3, H_2 - VESLG $4, H_2, H_2 - VLEIB $7, $48, H_1 - VSLB H_1, H_2, H_2 - VO H_0, H_2, H_0 - VLEIB $7, $104, H_1 - VSLB H_1, H_4, H_3 - VO H_3, H_0, H_0 - VLEIB $7, $24, H_1 - VSRLB H_1, H_4, H_1 - - // update state - VSTEG $1, H_0, 0(R1) - VSTEG $0, H_0, 8(R1) - VSTEG $1, H_1, 16(R1) - RET - -b2: // 2 or fewer blocks remaining - CMPBLE R3, $16, b1 - - // Load the 2 remaining blocks (17-32 bytes remaining). - MOVD $-17(R3), R0 // index of final byte to load modulo 16 - VL (R2), T_0 // load full 16 byte block - VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes - - // The Poly1305 algorithm requires that a 1 bit be appended to - // each message block. If the final block is less than 16 bytes - // long then it is easiest to insert the 1 before the message - // block is split into 26-bit limbs. If, on the other hand, the - // final message block is 16 bytes long then we append the 1 bit - // after expansion as normal. - MOVBZ $1, R0 - MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16) - CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long - VLVGB R3, R0, T_1 // insert 1 into the byte at index R3 - - // Split both blocks into 26-bit limbs in the appropriate lanes. - EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) - - // Append a 1 byte to the end of the second to last block. - VLEIB $4, $1, M_4 - - // Append a 1 byte to the end of the last block only if it is a - // full 16 byte block. - CMPBNE R3, $16, 2(PC) - VLEIB $12, $1, M_4 - - // Finally, set up the coefficients for the final multiplication. - // We have previously saved r and 5r in the 32-bit even indexes - // of the R_[0-4] and R5_[1-4] coefficient registers. - // - // We want lane 0 to be multiplied by r² so that can be kept the - // same. We want lane 1 to be multiplied by r so we need to move - // the saved r value into the 32-bit odd index in lane 1 by - // rotating the 64-bit lane by 32. - VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only - VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]] - VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]] - VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]] - VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]] - VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]] - VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]] - VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]] - VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]] - VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]] - - MOVD $0, R3 - BR multiply - -skip: - CMPBEQ R3, $0, finish - -b1: // 1 block remaining - - // Load the final block (1-16 bytes). This will be placed into - // lane 0. - MOVD $-1(R3), R0 - VLL R0, (R2), T_0 // pad to 16 bytes with zeros - - // The Poly1305 algorithm requires that a 1 bit be appended to - // each message block. If the final block is less than 16 bytes - // long then it is easiest to insert the 1 before the message - // block is split into 26-bit limbs. If, on the other hand, the - // final message block is 16 bytes long then we append the 1 bit - // after expansion as normal. - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, T_0 - - // Set the message block in lane 1 to the value 0 so that it - // can be accumulated without affecting the final result. - VZERO T_1 - - // Split the final message block into 26-bit limbs in lane 0. - // Lane 1 will be contain 0. - EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) - - // Append a 1 byte to the end of the last block only if it is a - // full 16 byte block. - CMPBNE R3, $16, 2(PC) - VLEIB $4, $1, M_4 - - // We have previously saved r and 5r in the 32-bit even indexes - // of the R_[0-4] and R5_[1-4] coefficient registers. - // - // We want lane 0 to be multiplied by r so we need to move the - // saved r value into the 32-bit odd index in lane 0. We want - // lane 1 to be set to the value 1. This makes multiplication - // a no-op. We do this by setting lane 1 in every register to 0 - // and then just setting the 32-bit index 3 in R_0 to 1. - VZERO T_0 - MOVD $0, R0 - MOVD $0x10111213, R12 - VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000] - VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0] - VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0] - VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0] - VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0] - VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0] - VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0] - VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0] - VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0] - VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0] - - // Set the value of lane 1 to be 1. - VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1] - - MOVD $0, R3 - BR multiply |