summaryrefslogtreecommitdiffstats
path: root/vendor/modernc.org/mathutil/primes.go
blob: ec1e5f5a589ce208b0894ce7fa1abd89bbceb4fe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Copyright (c) 2014 The mathutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mathutil // import "modernc.org/mathutil"

import (
	"math"
)

// IsPrimeUint16 returns true if n is prime. Typical run time is few ns.
func IsPrimeUint16(n uint16) bool {
	return n > 0 && primes16[n-1] == 1
}

// NextPrimeUint16 returns first prime > n and true if successful or an
// undefined value and false if there is no next prime in the uint16 limits.
// Typical run time is few ns.
func NextPrimeUint16(n uint16) (p uint16, ok bool) {
	return n + uint16(primes16[n]), n < 65521
}

// IsPrime returns true if n is prime. Typical run time is about 100 ns.
func IsPrime(n uint32) bool {
	switch {
	case n&1 == 0:
		return n == 2
	case n%3 == 0:
		return n == 3
	case n%5 == 0:
		return n == 5
	case n%7 == 0:
		return n == 7
	case n%11 == 0:
		return n == 11
	case n%13 == 0:
		return n == 13
	case n%17 == 0:
		return n == 17
	case n%19 == 0:
		return n == 19
	case n%23 == 0:
		return n == 23
	case n%29 == 0:
		return n == 29
	case n%31 == 0:
		return n == 31
	case n%37 == 0:
		return n == 37
	case n%41 == 0:
		return n == 41
	case n%43 == 0:
		return n == 43
	case n%47 == 0:
		return n == 47
	case n%53 == 0:
		return n == 53 // Benchmarked optimum
	case n < 65536:
		// use table data
		return IsPrimeUint16(uint16(n))
	default:
		mod := ModPowUint32(2, (n+1)/2, n)
		if mod != 2 && mod != n-2 {
			return false
		}
		blk := &lohi[n>>24]
		lo, hi := blk.lo, blk.hi
		for lo <= hi {
			index := (lo + hi) >> 1
			liar := liars[index]
			switch {
			case n > liar:
				lo = index + 1
			case n < liar:
				hi = index - 1
			default:
				return false
			}
		}
		return true
	}
}

// IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs.
//
// SPRP bases: http://miller-rabin.appspot.com
func IsPrimeUint64(n uint64) bool {
	switch {
	case n%2 == 0:
		return n == 2
	case n%3 == 0:
		return n == 3
	case n%5 == 0:
		return n == 5
	case n%7 == 0:
		return n == 7
	case n%11 == 0:
		return n == 11
	case n%13 == 0:
		return n == 13
	case n%17 == 0:
		return n == 17
	case n%19 == 0:
		return n == 19
	case n%23 == 0:
		return n == 23
	case n%29 == 0:
		return n == 29
	case n%31 == 0:
		return n == 31
	case n%37 == 0:
		return n == 37
	case n%41 == 0:
		return n == 41
	case n%43 == 0:
		return n == 43
	case n%47 == 0:
		return n == 47
	case n%53 == 0:
		return n == 53
	case n%59 == 0:
		return n == 59
	case n%61 == 0:
		return n == 61
	case n%67 == 0:
		return n == 67
	case n%71 == 0:
		return n == 71
	case n%73 == 0:
		return n == 73
	case n%79 == 0:
		return n == 79
	case n%83 == 0:
		return n == 83
	case n%89 == 0:
		return n == 89 // Benchmarked optimum
	case n <= math.MaxUint16:
		return IsPrimeUint16(uint16(n))
	case n <= math.MaxUint32:
		return ProbablyPrimeUint32(uint32(n), 11000544) &&
			ProbablyPrimeUint32(uint32(n), 31481107)
	case n < 105936894253:
		return ProbablyPrimeUint64_32(n, 2) &&
			ProbablyPrimeUint64_32(n, 1005905886) &&
			ProbablyPrimeUint64_32(n, 1340600841)
	case n < 31858317218647:
		return ProbablyPrimeUint64_32(n, 2) &&
			ProbablyPrimeUint64_32(n, 642735) &&
			ProbablyPrimeUint64_32(n, 553174392) &&
			ProbablyPrimeUint64_32(n, 3046413974)
	case n < 3071837692357849:
		return ProbablyPrimeUint64_32(n, 2) &&
			ProbablyPrimeUint64_32(n, 75088) &&
			ProbablyPrimeUint64_32(n, 642735) &&
			ProbablyPrimeUint64_32(n, 203659041) &&
			ProbablyPrimeUint64_32(n, 3613982119)
	default:
		return ProbablyPrimeUint64_32(n, 2) &&
			ProbablyPrimeUint64_32(n, 325) &&
			ProbablyPrimeUint64_32(n, 9375) &&
			ProbablyPrimeUint64_32(n, 28178) &&
			ProbablyPrimeUint64_32(n, 450775) &&
			ProbablyPrimeUint64_32(n, 9780504) &&
			ProbablyPrimeUint64_32(n, 1795265022)
	}
}

// NextPrime returns first prime > n and true if successful or an undefined value and false if there
// is no next prime in the uint32 limits. Typical run time is about 2 µs.
func NextPrime(n uint32) (p uint32, ok bool) {
	switch {
	case n < 65521:
		p16, _ := NextPrimeUint16(uint16(n))
		return uint32(p16), true
	case n >= math.MaxUint32-4:
		return
	}

	n++
	var d0, d uint32
	switch mod := n % 6; mod {
	case 0:
		d0, d = 1, 4
	case 1:
		d = 4
	case 2, 3, 4:
		d0, d = 5-mod, 2
	case 5:
		d = 2
	}

	p = n + d0
	if p < n { // overflow
		return
	}

	for {
		if IsPrime(p) {
			return p, true
		}

		p0 := p
		p += d
		if p < p0 { // overflow
			break
		}

		d ^= 6
	}
	return
}

// NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there
// is no next prime in the uint64 limits. Typical run time is in hundreds of µs.
func NextPrimeUint64(n uint64) (p uint64, ok bool) {
	switch {
	case n < 65521:
		p16, _ := NextPrimeUint16(uint16(n))
		return uint64(p16), true
	case n >= 18446744073709551557: // last uint64 prime
		return
	}

	n++
	var d0, d uint64
	switch mod := n % 6; mod {
	case 0:
		d0, d = 1, 4
	case 1:
		d = 4
	case 2, 3, 4:
		d0, d = 5-mod, 2
	case 5:
		d = 2
	}

	p = n + d0
	if p < n { // overflow
		return
	}

	for {
		if ok = IsPrimeUint64(p); ok {
			break
		}

		p0 := p
		p += d
		if p < p0 { // overflow
			break
		}

		d ^= 6
	}
	return
}

// FactorTerm is one term of an integer factorization.
type FactorTerm struct {
	Prime uint32 // The divisor
	Power uint32 // Term == Prime^Power
}

// FactorTerms represent a factorization of an integer
type FactorTerms []FactorTerm

// FactorInt returns prime factorization of n > 1 or nil otherwise.
// Resulting factors are ordered by Prime. Typical run time is few µs.
func FactorInt(n uint32) (f FactorTerms) {
	switch {
	case n < 2:
		return
	case IsPrime(n):
		return []FactorTerm{{n, 1}}
	}

	f, w := make([]FactorTerm, 9), 0
	for p := 2; p < len(primes16); p += int(primes16[p]) {
		if uint(p*p) > uint(n) {
			break
		}

		power := uint32(0)
		for n%uint32(p) == 0 {
			n /= uint32(p)
			power++
		}
		if power != 0 {
			f[w] = FactorTerm{uint32(p), power}
			w++
		}
		if n == 1 {
			break
		}
	}
	if n != 1 {
		f[w] = FactorTerm{n, 1}
		w++
	}
	return f[:w]
}

// PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a
// product of max 'max' primorials. The slice is not sorted.
//
// See also: http://en.wikipedia.org/wiki/Primorial
func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) {
	lo64, hi64 := int64(lo), int64(hi)
	if max > 31 { // N/A
		max = 31
	}

	var f func(int64, int64, uint32)
	f = func(n, p int64, emax uint32) {
		e := uint32(1)
		for n <= hi64 && e <= emax {
			n *= p
			if n >= lo64 && n <= hi64 {
				r = append(r, uint32(n))
			}
			if n < hi64 {
				p, _ := NextPrime(uint32(p))
				f(n, int64(p), e)
			}
			e++
		}
	}

	f(1, 2, max)
	return
}