summaryrefslogtreecommitdiffstats
path: root/vendor/modernc.org/mathutil/poly.go
blob: c15e696cfafb6f994fc828676b721648763102ad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright (c) 2016 The mathutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mathutil // import "modernc.org/mathutil"

import (
	"fmt"
	"math/big"
)

func abs(n int) uint64 {
	if n >= 0 {
		return uint64(n)
	}

	return uint64(-n)
}

// QuadPolyDiscriminant returns the discriminant of a quadratic polynomial in
// one variable of the form a*x^2+b*x+c with integer coefficients a, b, c, or
// an error on overflow.
//
// ds is the square of the discriminant. If |ds| is a square number, d is set
// to sqrt(|ds|), otherwise d is < 0.
func QuadPolyDiscriminant(a, b, c int) (ds, d int, _ error) {
	if 2*BitLenUint64(abs(b)) > IntBits-1 ||
		2+BitLenUint64(abs(a))+BitLenUint64(abs(c)) > IntBits-1 {
		return 0, 0, fmt.Errorf("overflow")
	}

	ds = b*b - 4*a*c
	s := ds
	if s < 0 {
		s = -s
	}
	d64 := SqrtUint64(uint64(s))
	if d64*d64 != uint64(s) {
		return ds, -1, nil
	}

	return ds, int(d64), nil
}

// PolyFactor describes an irreducible factor of a polynomial in one variable
// with integer coefficients P, Q of the form P*x+Q.
type PolyFactor struct {
	P, Q int
}

// QuadPolyFactors returns the content and the irreducible factors of the
// primitive part of a quadratic polynomial in one variable with integer
// coefficients a, b, c of the form a*x^2+b*x+c in integers, or an error on
// overflow.
//
// If the factorization in integers does not exists, the return value is (0,
// nil, nil).
//
// See also:
// https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization
func QuadPolyFactors(a, b, c int) (content int, primitivePart []PolyFactor, _ error) {
	content = int(GCDUint64(abs(a), GCDUint64(abs(b), abs(c))))
	switch {
	case content == 0:
		content = 1
	case content > 0:
		if a < 0 || a == 0 && b < 0 {
			content = -content
		}
	}
	a /= content
	b /= content
	c /= content
	if a == 0 {
		if b == 0 {
			return content, []PolyFactor{{0, c}}, nil
		}

		if b < 0 && c < 0 {
			b = -b
			c = -c
		}
		if b < 0 {
			b = -b
			c = -c
		}
		return content, []PolyFactor{{b, c}}, nil
	}

	ds, d, err := QuadPolyDiscriminant(a, b, c)
	if err != nil {
		return 0, nil, err
	}

	if ds < 0 || d < 0 {
		return 0, nil, nil
	}

	x1num := -b + d
	x1denom := 2 * a
	gcd := int(GCDUint64(abs(x1num), abs(x1denom)))
	x1num /= gcd
	x1denom /= gcd

	x2num := -b - d
	x2denom := 2 * a
	gcd = int(GCDUint64(abs(x2num), abs(x2denom)))
	x2num /= gcd
	x2denom /= gcd

	return content, []PolyFactor{{x1denom, -x1num}, {x2denom, -x2num}}, nil
}

// QuadPolyDiscriminantBig returns the discriminant of a quadratic polynomial
// in one variable of the form a*x^2+b*x+c with integer coefficients a, b, c.
//
// ds is the square of the discriminant. If |ds| is a square number, d is set
// to sqrt(|ds|), otherwise d is nil.
func QuadPolyDiscriminantBig(a, b, c *big.Int) (ds, d *big.Int) {
	ds = big.NewInt(0).Set(b)
	ds.Mul(ds, b)
	x := big.NewInt(4)
	x.Mul(x, a)
	x.Mul(x, c)
	ds.Sub(ds, x)

	s := big.NewInt(0).Set(ds)
	if s.Sign() < 0 {
		s.Neg(s)
	}

	if s.Bit(1) != 0 { // s is not a square number
		return ds, nil
	}

	d = SqrtBig(s)
	x.Set(d)
	x.Mul(x, x)
	if x.Cmp(s) != 0 { // s is not a square number
		d = nil
	}
	return ds, d
}

// PolyFactorBig describes an irreducible factor of a polynomial in one
// variable with integer coefficients P, Q of the form P*x+Q.
type PolyFactorBig struct {
	P, Q *big.Int
}

// QuadPolyFactorsBig returns the content and the irreducible factors of the
// primitive part of a quadratic polynomial in one variable with integer
// coefficients a, b, c of the form a*x^2+b*x+c in integers.
//
// If the factorization in integers does not exists, the return value is (nil,
// nil).
//
// See also:
// https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization
func QuadPolyFactorsBig(a, b, c *big.Int) (content *big.Int, primitivePart []PolyFactorBig) {
	content = bigGCD(bigAbs(a), bigGCD(bigAbs(b), bigAbs(c)))
	switch {
	case content.Sign() == 0:
		content.SetInt64(1)
	case content.Sign() > 0:
		if a.Sign() < 0 || a.Sign() == 0 && b.Sign() < 0 {
			content = bigNeg(content)
		}
	}
	a = bigDiv(a, content)
	b = bigDiv(b, content)
	c = bigDiv(c, content)

	if a.Sign() == 0 {
		if b.Sign() == 0 {
			return content, []PolyFactorBig{{big.NewInt(0), c}}
		}

		if b.Sign() < 0 && c.Sign() < 0 {
			b = bigNeg(b)
			c = bigNeg(c)
		}
		if b.Sign() < 0 {
			b = bigNeg(b)
			c = bigNeg(c)
		}
		return content, []PolyFactorBig{{b, c}}
	}

	ds, d := QuadPolyDiscriminantBig(a, b, c)
	if ds.Sign() < 0 || d == nil {
		return nil, nil
	}

	x1num := bigAdd(bigNeg(b), d)
	x1denom := bigMul(_2, a)
	gcd := bigGCD(bigAbs(x1num), bigAbs(x1denom))
	x1num = bigDiv(x1num, gcd)
	x1denom = bigDiv(x1denom, gcd)

	x2num := bigAdd(bigNeg(b), bigNeg(d))
	x2denom := bigMul(_2, a)
	gcd = bigGCD(bigAbs(x2num), bigAbs(x2denom))
	x2num = bigDiv(x2num, gcd)
	x2denom = bigDiv(x2denom, gcd)

	return content, []PolyFactorBig{{x1denom, bigNeg(x1num)}, {x2denom, bigNeg(x2num)}}
}

func bigAbs(n *big.Int) *big.Int {
	n = big.NewInt(0).Set(n)
	if n.Sign() >= 0 {
		return n
	}

	return n.Neg(n)
}

func bigDiv(a, b *big.Int) *big.Int {
	a = big.NewInt(0).Set(a)
	return a.Div(a, b)
}

func bigGCD(a, b *big.Int) *big.Int {
	a = big.NewInt(0).Set(a)
	b = big.NewInt(0).Set(b)
	for b.Sign() != 0 {
		c := big.NewInt(0)
		c.Mod(a, b)
		a, b = b, c
	}
	return a
}

func bigNeg(n *big.Int) *big.Int {
	n = big.NewInt(0).Set(n)
	return n.Neg(n)
}

func bigMul(a, b *big.Int) *big.Int {
	r := big.NewInt(0).Set(a)
	return r.Mul(r, b)
}

func bigAdd(a, b *big.Int) *big.Int {
	r := big.NewInt(0).Set(a)
	return r.Add(r, b)
}