summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/openpgp/packet/public_key.go
blob: ead26233dda713fe74d5f10d138d3d6d9ac12301 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package packet

import (
	"bytes"
	"crypto"
	"crypto/dsa"
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/rsa"
	"crypto/sha1"
	_ "crypto/sha256"
	_ "crypto/sha512"
	"encoding/binary"
	"fmt"
	"hash"
	"io"
	"math/big"
	"strconv"
	"time"

	"golang.org/x/crypto/openpgp/elgamal"
	"golang.org/x/crypto/openpgp/errors"
)

var (
	// NIST curve P-256
	oidCurveP256 []byte = []byte{0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07}
	// NIST curve P-384
	oidCurveP384 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x22}
	// NIST curve P-521
	oidCurveP521 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x23}
)

const maxOIDLength = 8

// ecdsaKey stores the algorithm-specific fields for ECDSA keys.
// as defined in RFC 6637, Section 9.
type ecdsaKey struct {
	// oid contains the OID byte sequence identifying the elliptic curve used
	oid []byte
	// p contains the elliptic curve point that represents the public key
	p parsedMPI
}

// parseOID reads the OID for the curve as defined in RFC 6637, Section 9.
func parseOID(r io.Reader) (oid []byte, err error) {
	buf := make([]byte, maxOIDLength)
	if _, err = readFull(r, buf[:1]); err != nil {
		return
	}
	oidLen := buf[0]
	if int(oidLen) > len(buf) {
		err = errors.UnsupportedError("invalid oid length: " + strconv.Itoa(int(oidLen)))
		return
	}
	oid = buf[:oidLen]
	_, err = readFull(r, oid)
	return
}

func (f *ecdsaKey) parse(r io.Reader) (err error) {
	if f.oid, err = parseOID(r); err != nil {
		return err
	}
	f.p.bytes, f.p.bitLength, err = readMPI(r)
	return
}

func (f *ecdsaKey) serialize(w io.Writer) (err error) {
	buf := make([]byte, maxOIDLength+1)
	buf[0] = byte(len(f.oid))
	copy(buf[1:], f.oid)
	if _, err = w.Write(buf[:len(f.oid)+1]); err != nil {
		return
	}
	return writeMPIs(w, f.p)
}

func (f *ecdsaKey) newECDSA() (*ecdsa.PublicKey, error) {
	var c elliptic.Curve
	if bytes.Equal(f.oid, oidCurveP256) {
		c = elliptic.P256()
	} else if bytes.Equal(f.oid, oidCurveP384) {
		c = elliptic.P384()
	} else if bytes.Equal(f.oid, oidCurveP521) {
		c = elliptic.P521()
	} else {
		return nil, errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", f.oid))
	}
	x, y := elliptic.Unmarshal(c, f.p.bytes)
	if x == nil {
		return nil, errors.UnsupportedError("failed to parse EC point")
	}
	return &ecdsa.PublicKey{Curve: c, X: x, Y: y}, nil
}

func (f *ecdsaKey) byteLen() int {
	return 1 + len(f.oid) + 2 + len(f.p.bytes)
}

type kdfHashFunction byte
type kdfAlgorithm byte

// ecdhKdf stores key derivation function parameters
// used for ECDH encryption. See RFC 6637, Section 9.
type ecdhKdf struct {
	KdfHash kdfHashFunction
	KdfAlgo kdfAlgorithm
}

func (f *ecdhKdf) parse(r io.Reader) (err error) {
	buf := make([]byte, 1)
	if _, err = readFull(r, buf); err != nil {
		return
	}
	kdfLen := int(buf[0])
	if kdfLen < 3 {
		return errors.UnsupportedError("Unsupported ECDH KDF length: " + strconv.Itoa(kdfLen))
	}
	buf = make([]byte, kdfLen)
	if _, err = readFull(r, buf); err != nil {
		return
	}
	reserved := int(buf[0])
	f.KdfHash = kdfHashFunction(buf[1])
	f.KdfAlgo = kdfAlgorithm(buf[2])
	if reserved != 0x01 {
		return errors.UnsupportedError("Unsupported KDF reserved field: " + strconv.Itoa(reserved))
	}
	return
}

func (f *ecdhKdf) serialize(w io.Writer) (err error) {
	buf := make([]byte, 4)
	// See RFC 6637, Section 9, Algorithm-Specific Fields for ECDH keys.
	buf[0] = byte(0x03) // Length of the following fields
	buf[1] = byte(0x01) // Reserved for future extensions, must be 1 for now
	buf[2] = byte(f.KdfHash)
	buf[3] = byte(f.KdfAlgo)
	_, err = w.Write(buf[:])
	return
}

func (f *ecdhKdf) byteLen() int {
	return 4
}

// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2.
type PublicKey struct {
	CreationTime time.Time
	PubKeyAlgo   PublicKeyAlgorithm
	PublicKey    interface{} // *rsa.PublicKey, *dsa.PublicKey or *ecdsa.PublicKey
	Fingerprint  [20]byte
	KeyId        uint64
	IsSubkey     bool

	n, e, p, q, g, y parsedMPI

	// RFC 6637 fields
	ec   *ecdsaKey
	ecdh *ecdhKdf
}

// signingKey provides a convenient abstraction over signature verification
// for v3 and v4 public keys.
type signingKey interface {
	SerializeSignaturePrefix(io.Writer)
	serializeWithoutHeaders(io.Writer) error
}

func fromBig(n *big.Int) parsedMPI {
	return parsedMPI{
		bytes:     n.Bytes(),
		bitLength: uint16(n.BitLen()),
	}
}

// NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey.
func NewRSAPublicKey(creationTime time.Time, pub *rsa.PublicKey) *PublicKey {
	pk := &PublicKey{
		CreationTime: creationTime,
		PubKeyAlgo:   PubKeyAlgoRSA,
		PublicKey:    pub,
		n:            fromBig(pub.N),
		e:            fromBig(big.NewInt(int64(pub.E))),
	}

	pk.setFingerPrintAndKeyId()
	return pk
}

// NewDSAPublicKey returns a PublicKey that wraps the given dsa.PublicKey.
func NewDSAPublicKey(creationTime time.Time, pub *dsa.PublicKey) *PublicKey {
	pk := &PublicKey{
		CreationTime: creationTime,
		PubKeyAlgo:   PubKeyAlgoDSA,
		PublicKey:    pub,
		p:            fromBig(pub.P),
		q:            fromBig(pub.Q),
		g:            fromBig(pub.G),
		y:            fromBig(pub.Y),
	}

	pk.setFingerPrintAndKeyId()
	return pk
}

// NewElGamalPublicKey returns a PublicKey that wraps the given elgamal.PublicKey.
func NewElGamalPublicKey(creationTime time.Time, pub *elgamal.PublicKey) *PublicKey {
	pk := &PublicKey{
		CreationTime: creationTime,
		PubKeyAlgo:   PubKeyAlgoElGamal,
		PublicKey:    pub,
		p:            fromBig(pub.P),
		g:            fromBig(pub.G),
		y:            fromBig(pub.Y),
	}

	pk.setFingerPrintAndKeyId()
	return pk
}

func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey {
	pk := &PublicKey{
		CreationTime: creationTime,
		PubKeyAlgo:   PubKeyAlgoECDSA,
		PublicKey:    pub,
		ec:           new(ecdsaKey),
	}

	switch pub.Curve {
	case elliptic.P256():
		pk.ec.oid = oidCurveP256
	case elliptic.P384():
		pk.ec.oid = oidCurveP384
	case elliptic.P521():
		pk.ec.oid = oidCurveP521
	default:
		panic("unknown elliptic curve")
	}

	pk.ec.p.bytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
	pk.ec.p.bitLength = uint16(8 * len(pk.ec.p.bytes))

	pk.setFingerPrintAndKeyId()
	return pk
}

func (pk *PublicKey) parse(r io.Reader) (err error) {
	// RFC 4880, section 5.5.2
	var buf [6]byte
	_, err = readFull(r, buf[:])
	if err != nil {
		return
	}
	if buf[0] != 4 {
		return errors.UnsupportedError("public key version")
	}
	pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0)
	pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5])
	switch pk.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
		err = pk.parseRSA(r)
	case PubKeyAlgoDSA:
		err = pk.parseDSA(r)
	case PubKeyAlgoElGamal:
		err = pk.parseElGamal(r)
	case PubKeyAlgoECDSA:
		pk.ec = new(ecdsaKey)
		if err = pk.ec.parse(r); err != nil {
			return err
		}
		pk.PublicKey, err = pk.ec.newECDSA()
	case PubKeyAlgoECDH:
		pk.ec = new(ecdsaKey)
		if err = pk.ec.parse(r); err != nil {
			return
		}
		pk.ecdh = new(ecdhKdf)
		if err = pk.ecdh.parse(r); err != nil {
			return
		}
		// The ECDH key is stored in an ecdsa.PublicKey for convenience.
		pk.PublicKey, err = pk.ec.newECDSA()
	default:
		err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
	}
	if err != nil {
		return
	}

	pk.setFingerPrintAndKeyId()
	return
}

func (pk *PublicKey) setFingerPrintAndKeyId() {
	// RFC 4880, section 12.2
	fingerPrint := sha1.New()
	pk.SerializeSignaturePrefix(fingerPrint)
	pk.serializeWithoutHeaders(fingerPrint)
	copy(pk.Fingerprint[:], fingerPrint.Sum(nil))
	pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
}

// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseRSA(r io.Reader) (err error) {
	pk.n.bytes, pk.n.bitLength, err = readMPI(r)
	if err != nil {
		return
	}
	pk.e.bytes, pk.e.bitLength, err = readMPI(r)
	if err != nil {
		return
	}

	if len(pk.e.bytes) > 3 {
		err = errors.UnsupportedError("large public exponent")
		return
	}
	rsa := &rsa.PublicKey{
		N: new(big.Int).SetBytes(pk.n.bytes),
		E: 0,
	}
	for i := 0; i < len(pk.e.bytes); i++ {
		rsa.E <<= 8
		rsa.E |= int(pk.e.bytes[i])
	}
	pk.PublicKey = rsa
	return
}

// parseDSA parses DSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseDSA(r io.Reader) (err error) {
	pk.p.bytes, pk.p.bitLength, err = readMPI(r)
	if err != nil {
		return
	}
	pk.q.bytes, pk.q.bitLength, err = readMPI(r)
	if err != nil {
		return
	}
	pk.g.bytes, pk.g.bitLength, err = readMPI(r)
	if err != nil {
		return
	}
	pk.y.bytes, pk.y.bitLength, err = readMPI(r)
	if err != nil {
		return
	}

	dsa := new(dsa.PublicKey)
	dsa.P = new(big.Int).SetBytes(pk.p.bytes)
	dsa.Q = new(big.Int).SetBytes(pk.q.bytes)
	dsa.G = new(big.Int).SetBytes(pk.g.bytes)
	dsa.Y = new(big.Int).SetBytes(pk.y.bytes)
	pk.PublicKey = dsa
	return
}

// parseElGamal parses ElGamal public key material from the given Reader. See
// RFC 4880, section 5.5.2.
func (pk *PublicKey) parseElGamal(r io.Reader) (err error) {
	pk.p.bytes, pk.p.bitLength, err = readMPI(r)
	if err != nil {
		return
	}
	pk.g.bytes, pk.g.bitLength, err = readMPI(r)
	if err != nil {
		return
	}
	pk.y.bytes, pk.y.bitLength, err = readMPI(r)
	if err != nil {
		return
	}

	elgamal := new(elgamal.PublicKey)
	elgamal.P = new(big.Int).SetBytes(pk.p.bytes)
	elgamal.G = new(big.Int).SetBytes(pk.g.bytes)
	elgamal.Y = new(big.Int).SetBytes(pk.y.bytes)
	pk.PublicKey = elgamal
	return
}

// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKey) SerializeSignaturePrefix(h io.Writer) {
	var pLength uint16
	switch pk.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
		pLength += 2 + uint16(len(pk.n.bytes))
		pLength += 2 + uint16(len(pk.e.bytes))
	case PubKeyAlgoDSA:
		pLength += 2 + uint16(len(pk.p.bytes))
		pLength += 2 + uint16(len(pk.q.bytes))
		pLength += 2 + uint16(len(pk.g.bytes))
		pLength += 2 + uint16(len(pk.y.bytes))
	case PubKeyAlgoElGamal:
		pLength += 2 + uint16(len(pk.p.bytes))
		pLength += 2 + uint16(len(pk.g.bytes))
		pLength += 2 + uint16(len(pk.y.bytes))
	case PubKeyAlgoECDSA:
		pLength += uint16(pk.ec.byteLen())
	case PubKeyAlgoECDH:
		pLength += uint16(pk.ec.byteLen())
		pLength += uint16(pk.ecdh.byteLen())
	default:
		panic("unknown public key algorithm")
	}
	pLength += 6
	h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
	return
}

func (pk *PublicKey) Serialize(w io.Writer) (err error) {
	length := 6 // 6 byte header

	switch pk.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
		length += 2 + len(pk.n.bytes)
		length += 2 + len(pk.e.bytes)
	case PubKeyAlgoDSA:
		length += 2 + len(pk.p.bytes)
		length += 2 + len(pk.q.bytes)
		length += 2 + len(pk.g.bytes)
		length += 2 + len(pk.y.bytes)
	case PubKeyAlgoElGamal:
		length += 2 + len(pk.p.bytes)
		length += 2 + len(pk.g.bytes)
		length += 2 + len(pk.y.bytes)
	case PubKeyAlgoECDSA:
		length += pk.ec.byteLen()
	case PubKeyAlgoECDH:
		length += pk.ec.byteLen()
		length += pk.ecdh.byteLen()
	default:
		panic("unknown public key algorithm")
	}

	packetType := packetTypePublicKey
	if pk.IsSubkey {
		packetType = packetTypePublicSubkey
	}
	err = serializeHeader(w, packetType, length)
	if err != nil {
		return
	}
	return pk.serializeWithoutHeaders(w)
}

// serializeWithoutHeaders marshals the PublicKey to w in the form of an
// OpenPGP public key packet, not including the packet header.
func (pk *PublicKey) serializeWithoutHeaders(w io.Writer) (err error) {
	var buf [6]byte
	buf[0] = 4
	t := uint32(pk.CreationTime.Unix())
	buf[1] = byte(t >> 24)
	buf[2] = byte(t >> 16)
	buf[3] = byte(t >> 8)
	buf[4] = byte(t)
	buf[5] = byte(pk.PubKeyAlgo)

	_, err = w.Write(buf[:])
	if err != nil {
		return
	}

	switch pk.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
		return writeMPIs(w, pk.n, pk.e)
	case PubKeyAlgoDSA:
		return writeMPIs(w, pk.p, pk.q, pk.g, pk.y)
	case PubKeyAlgoElGamal:
		return writeMPIs(w, pk.p, pk.g, pk.y)
	case PubKeyAlgoECDSA:
		return pk.ec.serialize(w)
	case PubKeyAlgoECDH:
		if err = pk.ec.serialize(w); err != nil {
			return
		}
		return pk.ecdh.serialize(w)
	}
	return errors.InvalidArgumentError("bad public-key algorithm")
}

// CanSign returns true iff this public key can generate signatures
func (pk *PublicKey) CanSign() bool {
	return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElGamal
}

// VerifySignature returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err error) {
	if !pk.CanSign() {
		return errors.InvalidArgumentError("public key cannot generate signatures")
	}

	signed.Write(sig.HashSuffix)
	hashBytes := signed.Sum(nil)

	if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
		return errors.SignatureError("hash tag doesn't match")
	}

	if pk.PubKeyAlgo != sig.PubKeyAlgo {
		return errors.InvalidArgumentError("public key and signature use different algorithms")
	}

	switch pk.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
		rsaPublicKey, _ := pk.PublicKey.(*rsa.PublicKey)
		err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes)
		if err != nil {
			return errors.SignatureError("RSA verification failure")
		}
		return nil
	case PubKeyAlgoDSA:
		dsaPublicKey, _ := pk.PublicKey.(*dsa.PublicKey)
		// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
		subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8
		if len(hashBytes) > subgroupSize {
			hashBytes = hashBytes[:subgroupSize]
		}
		if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) {
			return errors.SignatureError("DSA verification failure")
		}
		return nil
	case PubKeyAlgoECDSA:
		ecdsaPublicKey := pk.PublicKey.(*ecdsa.PublicKey)
		if !ecdsa.Verify(ecdsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.ECDSASigR.bytes), new(big.Int).SetBytes(sig.ECDSASigS.bytes)) {
			return errors.SignatureError("ECDSA verification failure")
		}
		return nil
	default:
		return errors.SignatureError("Unsupported public key algorithm used in signature")
	}
}

// VerifySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) {
	if !pk.CanSign() {
		return errors.InvalidArgumentError("public key cannot generate signatures")
	}

	suffix := make([]byte, 5)
	suffix[0] = byte(sig.SigType)
	binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix()))
	signed.Write(suffix)
	hashBytes := signed.Sum(nil)

	if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
		return errors.SignatureError("hash tag doesn't match")
	}

	if pk.PubKeyAlgo != sig.PubKeyAlgo {
		return errors.InvalidArgumentError("public key and signature use different algorithms")
	}

	switch pk.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
		rsaPublicKey := pk.PublicKey.(*rsa.PublicKey)
		if err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil {
			return errors.SignatureError("RSA verification failure")
		}
		return
	case PubKeyAlgoDSA:
		dsaPublicKey := pk.PublicKey.(*dsa.PublicKey)
		// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
		subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8
		if len(hashBytes) > subgroupSize {
			hashBytes = hashBytes[:subgroupSize]
		}
		if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) {
			return errors.SignatureError("DSA verification failure")
		}
		return nil
	default:
		panic("shouldn't happen")
	}
}

// keySignatureHash returns a Hash of the message that needs to be signed for
// pk to assert a subkey relationship to signed.
func keySignatureHash(pk, signed signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
	if !hashFunc.Available() {
		return nil, errors.UnsupportedError("hash function")
	}
	h = hashFunc.New()

	// RFC 4880, section 5.2.4
	pk.SerializeSignaturePrefix(h)
	pk.serializeWithoutHeaders(h)
	signed.SerializeSignaturePrefix(h)
	signed.serializeWithoutHeaders(h)
	return
}

// VerifyKeySignature returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) error {
	h, err := keySignatureHash(pk, signed, sig.Hash)
	if err != nil {
		return err
	}
	if err = pk.VerifySignature(h, sig); err != nil {
		return err
	}

	if sig.FlagSign {
		// Signing subkeys must be cross-signed. See
		// https://www.gnupg.org/faq/subkey-cross-certify.html.
		if sig.EmbeddedSignature == nil {
			return errors.StructuralError("signing subkey is missing cross-signature")
		}
		// Verify the cross-signature. This is calculated over the same
		// data as the main signature, so we cannot just recursively
		// call signed.VerifyKeySignature(...)
		if h, err = keySignatureHash(pk, signed, sig.EmbeddedSignature.Hash); err != nil {
			return errors.StructuralError("error while hashing for cross-signature: " + err.Error())
		}
		if err := signed.VerifySignature(h, sig.EmbeddedSignature); err != nil {
			return errors.StructuralError("error while verifying cross-signature: " + err.Error())
		}
	}

	return nil
}

func keyRevocationHash(pk signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
	if !hashFunc.Available() {
		return nil, errors.UnsupportedError("hash function")
	}
	h = hashFunc.New()

	// RFC 4880, section 5.2.4
	pk.SerializeSignaturePrefix(h)
	pk.serializeWithoutHeaders(h)

	return
}

// VerifyRevocationSignature returns nil iff sig is a valid signature, made by this
// public key.
func (pk *PublicKey) VerifyRevocationSignature(sig *Signature) (err error) {
	h, err := keyRevocationHash(pk, sig.Hash)
	if err != nil {
		return err
	}
	return pk.VerifySignature(h, sig)
}

// userIdSignatureHash returns a Hash of the message that needs to be signed
// to assert that pk is a valid key for id.
func userIdSignatureHash(id string, pk *PublicKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
	if !hashFunc.Available() {
		return nil, errors.UnsupportedError("hash function")
	}
	h = hashFunc.New()

	// RFC 4880, section 5.2.4
	pk.SerializeSignaturePrefix(h)
	pk.serializeWithoutHeaders(h)

	var buf [5]byte
	buf[0] = 0xb4
	buf[1] = byte(len(id) >> 24)
	buf[2] = byte(len(id) >> 16)
	buf[3] = byte(len(id) >> 8)
	buf[4] = byte(len(id))
	h.Write(buf[:])
	h.Write([]byte(id))

	return
}

// VerifyUserIdSignature returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKey) VerifyUserIdSignature(id string, pub *PublicKey, sig *Signature) (err error) {
	h, err := userIdSignatureHash(id, pub, sig.Hash)
	if err != nil {
		return err
	}
	return pk.VerifySignature(h, sig)
}

// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKey) VerifyUserIdSignatureV3(id string, pub *PublicKey, sig *SignatureV3) (err error) {
	h, err := userIdSignatureV3Hash(id, pub, sig.Hash)
	if err != nil {
		return err
	}
	return pk.VerifySignatureV3(h, sig)
}

// KeyIdString returns the public key's fingerprint in capital hex
// (e.g. "6C7EE1B8621CC013").
func (pk *PublicKey) KeyIdString() string {
	return fmt.Sprintf("%X", pk.Fingerprint[12:20])
}

// KeyIdShortString returns the short form of public key's fingerprint
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013").
func (pk *PublicKey) KeyIdShortString() string {
	return fmt.Sprintf("%X", pk.Fingerprint[16:20])
}

// A parsedMPI is used to store the contents of a big integer, along with the
// bit length that was specified in the original input. This allows the MPI to
// be reserialized exactly.
type parsedMPI struct {
	bytes     []byte
	bitLength uint16
}

// writeMPIs is a utility function for serializing several big integers to the
// given Writer.
func writeMPIs(w io.Writer, mpis ...parsedMPI) (err error) {
	for _, mpi := range mpis {
		err = writeMPI(w, mpi.bitLength, mpi.bytes)
		if err != nil {
			return
		}
	}
	return
}

// BitLength returns the bit length for the given public key.
func (pk *PublicKey) BitLength() (bitLength uint16, err error) {
	switch pk.PubKeyAlgo {
	case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
		bitLength = pk.n.bitLength
	case PubKeyAlgoDSA:
		bitLength = pk.p.bitLength
	case PubKeyAlgoElGamal:
		bitLength = pk.p.bitLength
	default:
		err = errors.InvalidArgumentError("bad public-key algorithm")
	}
	return
}