1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file provides the generic implementation of Sum and MAC. Other files
// might provide optimized assembly implementations of some of this code.
package poly1305
import "encoding/binary"
// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
// for a 64 bytes message is approximately
//
// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5
//
// for some secret r and s. It can be computed sequentially like
//
// for len(msg) > 0:
// h += read(msg, 16)
// h *= r
// h %= 2¹³⁰ - 5
// return h + s
//
// All the complexity is about doing performant constant-time math on numbers
// larger than any available numeric type.
func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
h := newMACGeneric(key)
h.Write(msg)
h.Sum(out)
}
func newMACGeneric(key *[32]byte) macGeneric {
m := macGeneric{}
initialize(key, &m.macState)
return m
}
// macState holds numbers in saturated 64-bit little-endian limbs. That is,
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
type macState struct {
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
// can grow larger during and after rounds. It must, however, remain below
// 2 * (2¹³⁰ - 5).
h [3]uint64
// r and s are the private key components.
r [2]uint64
s [2]uint64
}
type macGeneric struct {
macState
buffer [TagSize]byte
offset int
}
// Write splits the incoming message into TagSize chunks, and passes them to
// update. It buffers incomplete chunks.
func (h *macGeneric) Write(p []byte) (int, error) {
nn := len(p)
if h.offset > 0 {
n := copy(h.buffer[h.offset:], p)
if h.offset+n < TagSize {
h.offset += n
return nn, nil
}
p = p[n:]
h.offset = 0
updateGeneric(&h.macState, h.buffer[:])
}
if n := len(p) - (len(p) % TagSize); n > 0 {
updateGeneric(&h.macState, p[:n])
p = p[n:]
}
if len(p) > 0 {
h.offset += copy(h.buffer[h.offset:], p)
}
return nn, nil
}
// Sum flushes the last incomplete chunk from the buffer, if any, and generates
// the MAC output. It does not modify its state, in order to allow for multiple
// calls to Sum, even if no Write is allowed after Sum.
func (h *macGeneric) Sum(out *[TagSize]byte) {
state := h.macState
if h.offset > 0 {
updateGeneric(&state, h.buffer[:h.offset])
}
finalize(out, &state.h, &state.s)
}
// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
// clears some bits of the secret coefficient to make it possible to implement
// multiplication more efficiently.
const (
rMask0 = 0x0FFFFFFC0FFFFFFF
rMask1 = 0x0FFFFFFC0FFFFFFC
)
// initialize loads the 256-bit key into the two 128-bit secret values r and s.
func initialize(key *[32]byte, m *macState) {
m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
m.s[0] = binary.LittleEndian.Uint64(key[16:24])
m.s[1] = binary.LittleEndian.Uint64(key[24:32])
}
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
// bits.Mul64 and bits.Add64 intrinsics.
type uint128 struct {
lo, hi uint64
}
func mul64(a, b uint64) uint128 {
hi, lo := bitsMul64(a, b)
return uint128{lo, hi}
}
func add128(a, b uint128) uint128 {
lo, c := bitsAdd64(a.lo, b.lo, 0)
hi, c := bitsAdd64(a.hi, b.hi, c)
if c != 0 {
panic("poly1305: unexpected overflow")
}
return uint128{lo, hi}
}
func shiftRightBy2(a uint128) uint128 {
a.lo = a.lo>>2 | (a.hi&3)<<62
a.hi = a.hi >> 2
return a
}
// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
// 128 bits of message, it computes
//
// h₊ = (h + m) * r mod 2¹³⁰ - 5
//
// If the msg length is not a multiple of TagSize, it assumes the last
// incomplete chunk is the final one.
func updateGeneric(state *macState, msg []byte) {
h0, h1, h2 := state.h[0], state.h[1], state.h[2]
r0, r1 := state.r[0], state.r[1]
for len(msg) > 0 {
var c uint64
// For the first step, h + m, we use a chain of bits.Add64 intrinsics.
// The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
// reduced at the end of the multiplication below.
//
// The spec requires us to set a bit just above the message size, not to
// hide leading zeroes. For full chunks, that's 1 << 128, so we can just
// add 1 to the most significant (2¹²⁸) limb, h2.
if len(msg) >= TagSize {
h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
h2 += c + 1
msg = msg[TagSize:]
} else {
var buf [TagSize]byte
copy(buf[:], msg)
buf[len(msg)] = 1
h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
h2 += c
msg = nil
}
// Multiplication of big number limbs is similar to elementary school
// columnar multiplication. Instead of digits, there are 64-bit limbs.
//
// We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
//
// h2 h1 h0 x
// r1 r0 =
// ----------------
// h2r0 h1r0 h0r0 <-- individual 128-bit products
// + h2r1 h1r1 h0r1
// ------------------------
// m3 m2 m1 m0 <-- result in 128-bit overlapping limbs
// ------------------------
// m3.hi m2.hi m1.hi m0.hi <-- carry propagation
// + m3.lo m2.lo m1.lo m0.lo
// -------------------------------
// t4 t3 t2 t1 t0 <-- final result in 64-bit limbs
//
// The main difference from pen-and-paper multiplication is that we do
// carry propagation in a separate step, as if we wrote two digit sums
// at first (the 128-bit limbs), and then carried the tens all at once.
h0r0 := mul64(h0, r0)
h1r0 := mul64(h1, r0)
h2r0 := mul64(h2, r0)
h0r1 := mul64(h0, r1)
h1r1 := mul64(h1, r1)
h2r1 := mul64(h2, r1)
// Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
// top 4 bits cleared by rMask{0,1}, we know that their product is not going
// to overflow 64 bits, so we can ignore the high part of the products.
//
// This also means that the product doesn't have a fifth limb (t4).
if h2r0.hi != 0 {
panic("poly1305: unexpected overflow")
}
if h2r1.hi != 0 {
panic("poly1305: unexpected overflow")
}
m0 := h0r0
m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
m3 := h2r1
t0 := m0.lo
t1, c := bitsAdd64(m1.lo, m0.hi, 0)
t2, c := bitsAdd64(m2.lo, m1.hi, c)
t3, _ := bitsAdd64(m3.lo, m2.hi, c)
// Now we have the result as 4 64-bit limbs, and we need to reduce it
// modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
// a cheap partial reduction according to the reduction identity
//
// c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5
//
// because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
// likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
// assumptions we make about h in the rest of the code.
//
// See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
// We split the final result at the 2¹³⁰ mark into h and cc, the carry.
// Note that the carry bits are effectively shifted left by 2, in other
// words, cc = c * 4 for the c in the reduction identity.
h0, h1, h2 = t0, t1, t2&maskLow2Bits
cc := uint128{t2 & maskNotLow2Bits, t3}
// To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
h0, c = bitsAdd64(h0, cc.lo, 0)
h1, c = bitsAdd64(h1, cc.hi, c)
h2 += c
cc = shiftRightBy2(cc)
h0, c = bitsAdd64(h0, cc.lo, 0)
h1, c = bitsAdd64(h1, cc.hi, c)
h2 += c
// h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
//
// 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
}
state.h[0], state.h[1], state.h[2] = h0, h1, h2
}
const (
maskLow2Bits uint64 = 0x0000000000000003
maskNotLow2Bits uint64 = ^maskLow2Bits
)
// select64 returns x if v == 1 and y if v == 0, in constant time.
func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
const (
p0 = 0xFFFFFFFFFFFFFFFB
p1 = 0xFFFFFFFFFFFFFFFF
p2 = 0x0000000000000003
)
// finalize completes the modular reduction of h and computes
//
// out = h + s mod 2¹²⁸
func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
h0, h1, h2 := h[0], h[1], h[2]
// After the partial reduction in updateGeneric, h might be more than
// 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
// in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
// result if the subtraction underflows, and t otherwise.
hMinusP0, b := bitsSub64(h0, p0, 0)
hMinusP1, b := bitsSub64(h1, p1, b)
_, b = bitsSub64(h2, p2, b)
// h = h if h < p else h - p
h0 = select64(b, h0, hMinusP0)
h1 = select64(b, h1, hMinusP1)
// Finally, we compute the last Poly1305 step
//
// tag = h + s mod 2¹²⁸
//
// by just doing a wide addition with the 128 low bits of h and discarding
// the overflow.
h0, c := bitsAdd64(h0, s[0], 0)
h1, _ = bitsAdd64(h1, s[1], c)
binary.LittleEndian.PutUint64(out[0:8], h0)
binary.LittleEndian.PutUint64(out[8:16], h1)
}
|