summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/curve25519/mont25519_amd64.go
blob: 5822bd53383495f484075e14cdc5c18dc658101a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build amd64,!gccgo,!appengine

package curve25519

// These functions are implemented in the .s files. The names of the functions
// in the rest of the file are also taken from the SUPERCOP sources to help
// people following along.

//go:noescape

func cswap(inout *[5]uint64, v uint64)

//go:noescape

func ladderstep(inout *[5][5]uint64)

//go:noescape

func freeze(inout *[5]uint64)

//go:noescape

func mul(dest, a, b *[5]uint64)

//go:noescape

func square(out, in *[5]uint64)

// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
func mladder(xr, zr *[5]uint64, s *[32]byte) {
	var work [5][5]uint64

	work[0] = *xr
	setint(&work[1], 1)
	setint(&work[2], 0)
	work[3] = *xr
	setint(&work[4], 1)

	j := uint(6)
	var prevbit byte

	for i := 31; i >= 0; i-- {
		for j < 8 {
			bit := ((*s)[i] >> j) & 1
			swap := bit ^ prevbit
			prevbit = bit
			cswap(&work[1], uint64(swap))
			ladderstep(&work)
			j--
		}
		j = 7
	}

	*xr = work[1]
	*zr = work[2]
}

func scalarMult(out, in, base *[32]byte) {
	var e [32]byte
	copy(e[:], (*in)[:])
	e[0] &= 248
	e[31] &= 127
	e[31] |= 64

	var t, z [5]uint64
	unpack(&t, base)
	mladder(&t, &z, &e)
	invert(&z, &z)
	mul(&t, &t, &z)
	pack(out, &t)
}

func setint(r *[5]uint64, v uint64) {
	r[0] = v
	r[1] = 0
	r[2] = 0
	r[3] = 0
	r[4] = 0
}

// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
// order.
func unpack(r *[5]uint64, x *[32]byte) {
	r[0] = uint64(x[0]) |
		uint64(x[1])<<8 |
		uint64(x[2])<<16 |
		uint64(x[3])<<24 |
		uint64(x[4])<<32 |
		uint64(x[5])<<40 |
		uint64(x[6]&7)<<48

	r[1] = uint64(x[6])>>3 |
		uint64(x[7])<<5 |
		uint64(x[8])<<13 |
		uint64(x[9])<<21 |
		uint64(x[10])<<29 |
		uint64(x[11])<<37 |
		uint64(x[12]&63)<<45

	r[2] = uint64(x[12])>>6 |
		uint64(x[13])<<2 |
		uint64(x[14])<<10 |
		uint64(x[15])<<18 |
		uint64(x[16])<<26 |
		uint64(x[17])<<34 |
		uint64(x[18])<<42 |
		uint64(x[19]&1)<<50

	r[3] = uint64(x[19])>>1 |
		uint64(x[20])<<7 |
		uint64(x[21])<<15 |
		uint64(x[22])<<23 |
		uint64(x[23])<<31 |
		uint64(x[24])<<39 |
		uint64(x[25]&15)<<47

	r[4] = uint64(x[25])>>4 |
		uint64(x[26])<<4 |
		uint64(x[27])<<12 |
		uint64(x[28])<<20 |
		uint64(x[29])<<28 |
		uint64(x[30])<<36 |
		uint64(x[31]&127)<<44
}

// pack sets out = x where out is the usual, little-endian form of the 5,
// 51-bit limbs in x.
func pack(out *[32]byte, x *[5]uint64) {
	t := *x
	freeze(&t)

	out[0] = byte(t[0])
	out[1] = byte(t[0] >> 8)
	out[2] = byte(t[0] >> 16)
	out[3] = byte(t[0] >> 24)
	out[4] = byte(t[0] >> 32)
	out[5] = byte(t[0] >> 40)
	out[6] = byte(t[0] >> 48)

	out[6] ^= byte(t[1]<<3) & 0xf8
	out[7] = byte(t[1] >> 5)
	out[8] = byte(t[1] >> 13)
	out[9] = byte(t[1] >> 21)
	out[10] = byte(t[1] >> 29)
	out[11] = byte(t[1] >> 37)
	out[12] = byte(t[1] >> 45)

	out[12] ^= byte(t[2]<<6) & 0xc0
	out[13] = byte(t[2] >> 2)
	out[14] = byte(t[2] >> 10)
	out[15] = byte(t[2] >> 18)
	out[16] = byte(t[2] >> 26)
	out[17] = byte(t[2] >> 34)
	out[18] = byte(t[2] >> 42)
	out[19] = byte(t[2] >> 50)

	out[19] ^= byte(t[3]<<1) & 0xfe
	out[20] = byte(t[3] >> 7)
	out[21] = byte(t[3] >> 15)
	out[22] = byte(t[3] >> 23)
	out[23] = byte(t[3] >> 31)
	out[24] = byte(t[3] >> 39)
	out[25] = byte(t[3] >> 47)

	out[25] ^= byte(t[4]<<4) & 0xf0
	out[26] = byte(t[4] >> 4)
	out[27] = byte(t[4] >> 12)
	out[28] = byte(t[4] >> 20)
	out[29] = byte(t[4] >> 28)
	out[30] = byte(t[4] >> 36)
	out[31] = byte(t[4] >> 44)
}

// invert calculates r = x^-1 mod p using Fermat's little theorem.
func invert(r *[5]uint64, x *[5]uint64) {
	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64

	square(&z2, x)        /* 2 */
	square(&t, &z2)       /* 4 */
	square(&t, &t)        /* 8 */
	mul(&z9, &t, x)       /* 9 */
	mul(&z11, &z9, &z2)   /* 11 */
	square(&t, &z11)      /* 22 */
	mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */

	square(&t, &z2_5_0)      /* 2^6 - 2^1 */
	for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
		square(&t, &t)
	}
	mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */

	square(&t, &z2_10_0)      /* 2^11 - 2^1 */
	for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
		square(&t, &t)
	}
	mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */

	square(&t, &z2_20_0)      /* 2^21 - 2^1 */
	for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
		square(&t, &t)
	}
	mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */

	square(&t, &t)            /* 2^41 - 2^1 */
	for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
		square(&t, &t)
	}
	mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */

	square(&t, &z2_50_0)      /* 2^51 - 2^1 */
	for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
		square(&t, &t)
	}
	mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */

	square(&t, &z2_100_0)      /* 2^101 - 2^1 */
	for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
		square(&t, &t)
	}
	mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */

	square(&t, &t)            /* 2^201 - 2^1 */
	for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
		square(&t, &t)
	}
	mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */

	square(&t, &t) /* 2^251 - 2^1 */
	square(&t, &t) /* 2^252 - 2^2 */
	square(&t, &t) /* 2^253 - 2^3 */

	square(&t, &t) /* 2^254 - 2^4 */

	square(&t, &t)   /* 2^255 - 2^5 */
	mul(r, &t, &z11) /* 2^255 - 21 */
}