1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package field implements fast arithmetic modulo 2^255-19.
package field
import (
"crypto/subtle"
"encoding/binary"
"math/bits"
)
// Element represents an element of the field GF(2^255-19). Note that this
// is not a cryptographically secure group, and should only be used to interact
// with edwards25519.Point coordinates.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is a valid zero element.
type Element struct {
// An element t represents the integer
// t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
//
// Between operations, all limbs are expected to be lower than 2^52.
l0 uint64
l1 uint64
l2 uint64
l3 uint64
l4 uint64
}
const maskLow51Bits uint64 = (1 << 51) - 1
var feZero = &Element{0, 0, 0, 0, 0}
// Zero sets v = 0, and returns v.
func (v *Element) Zero() *Element {
*v = *feZero
return v
}
var feOne = &Element{1, 0, 0, 0, 0}
// One sets v = 1, and returns v.
func (v *Element) One() *Element {
*v = *feOne
return v
}
// reduce reduces v modulo 2^255 - 19 and returns it.
func (v *Element) reduce() *Element {
v.carryPropagate()
// After the light reduction we now have a field element representation
// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
c := (v.l0 + 19) >> 51
c = (v.l1 + c) >> 51
c = (v.l2 + c) >> 51
c = (v.l3 + c) >> 51
c = (v.l4 + c) >> 51
// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
// effectively applying the reduction identity to the carry.
v.l0 += 19 * c
v.l1 += v.l0 >> 51
v.l0 = v.l0 & maskLow51Bits
v.l2 += v.l1 >> 51
v.l1 = v.l1 & maskLow51Bits
v.l3 += v.l2 >> 51
v.l2 = v.l2 & maskLow51Bits
v.l4 += v.l3 >> 51
v.l3 = v.l3 & maskLow51Bits
// no additional carry
v.l4 = v.l4 & maskLow51Bits
return v
}
// Add sets v = a + b, and returns v.
func (v *Element) Add(a, b *Element) *Element {
v.l0 = a.l0 + b.l0
v.l1 = a.l1 + b.l1
v.l2 = a.l2 + b.l2
v.l3 = a.l3 + b.l3
v.l4 = a.l4 + b.l4
// Using the generic implementation here is actually faster than the
// assembly. Probably because the body of this function is so simple that
// the compiler can figure out better optimizations by inlining the carry
// propagation. TODO
return v.carryPropagateGeneric()
}
// Subtract sets v = a - b, and returns v.
func (v *Element) Subtract(a, b *Element) *Element {
// We first add 2 * p, to guarantee the subtraction won't underflow, and
// then subtract b (which can be up to 2^255 + 2^13 * 19).
v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
return v.carryPropagate()
}
// Negate sets v = -a, and returns v.
func (v *Element) Negate(a *Element) *Element {
return v.Subtract(feZero, a)
}
// Invert sets v = 1/z mod p, and returns v.
//
// If z == 0, Invert returns v = 0.
func (v *Element) Invert(z *Element) *Element {
// Inversion is implemented as exponentiation with exponent p − 2. It uses the
// same sequence of 255 squarings and 11 multiplications as [Curve25519].
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
z2.Square(z) // 2
t.Square(&z2) // 4
t.Square(&t) // 8
z9.Multiply(&t, z) // 9
z11.Multiply(&z9, &z2) // 11
t.Square(&z11) // 22
z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
t.Square(&z2_5_0) // 2^6 - 2^1
for i := 0; i < 4; i++ {
t.Square(&t) // 2^10 - 2^5
}
z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
t.Square(&z2_10_0) // 2^11 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^20 - 2^10
}
z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
t.Square(&z2_20_0) // 2^21 - 2^1
for i := 0; i < 19; i++ {
t.Square(&t) // 2^40 - 2^20
}
t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
t.Square(&t) // 2^41 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^50 - 2^10
}
z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
t.Square(&z2_50_0) // 2^51 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^100 - 2^50
}
z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
t.Square(&z2_100_0) // 2^101 - 2^1
for i := 0; i < 99; i++ {
t.Square(&t) // 2^200 - 2^100
}
t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
t.Square(&t) // 2^201 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^250 - 2^50
}
t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
t.Square(&t) // 2^251 - 2^1
t.Square(&t) // 2^252 - 2^2
t.Square(&t) // 2^253 - 2^3
t.Square(&t) // 2^254 - 2^4
t.Square(&t) // 2^255 - 2^5
return v.Multiply(&t, &z11) // 2^255 - 21
}
// Set sets v = a, and returns v.
func (v *Element) Set(a *Element) *Element {
*v = *a
return v
}
// SetBytes sets v to x, which must be a 32-byte little-endian encoding.
//
// Consistent with RFC 7748, the most significant bit (the high bit of the
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
// are accepted. Note that this is laxer than specified by RFC 8032.
func (v *Element) SetBytes(x []byte) *Element {
if len(x) != 32 {
panic("edwards25519: invalid field element input size")
}
// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
v.l0 = binary.LittleEndian.Uint64(x[0:8])
v.l0 &= maskLow51Bits
// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
v.l1 &= maskLow51Bits
// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
v.l2 &= maskLow51Bits
// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
v.l3 &= maskLow51Bits
// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
// Note: not bytes 25:33, shift 4, to avoid overread.
v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
v.l4 &= maskLow51Bits
return v
}
// Bytes returns the canonical 32-byte little-endian encoding of v.
func (v *Element) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [32]byte
return v.bytes(&out)
}
func (v *Element) bytes(out *[32]byte) []byte {
t := *v
t.reduce()
var buf [8]byte
for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
bitsOffset := i * 51
binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
for i, bb := range buf {
off := bitsOffset/8 + i
if off >= len(out) {
break
}
out[off] |= bb
}
}
return out[:]
}
// Equal returns 1 if v and u are equal, and 0 otherwise.
func (v *Element) Equal(u *Element) int {
sa, sv := u.Bytes(), v.Bytes()
return subtle.ConstantTimeCompare(sa, sv)
}
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
// Select sets v to a if cond == 1, and to b if cond == 0.
func (v *Element) Select(a, b *Element, cond int) *Element {
m := mask64Bits(cond)
v.l0 = (m & a.l0) | (^m & b.l0)
v.l1 = (m & a.l1) | (^m & b.l1)
v.l2 = (m & a.l2) | (^m & b.l2)
v.l3 = (m & a.l3) | (^m & b.l3)
v.l4 = (m & a.l4) | (^m & b.l4)
return v
}
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
func (v *Element) Swap(u *Element, cond int) {
m := mask64Bits(cond)
t := m & (v.l0 ^ u.l0)
v.l0 ^= t
u.l0 ^= t
t = m & (v.l1 ^ u.l1)
v.l1 ^= t
u.l1 ^= t
t = m & (v.l2 ^ u.l2)
v.l2 ^= t
u.l2 ^= t
t = m & (v.l3 ^ u.l3)
v.l3 ^= t
u.l3 ^= t
t = m & (v.l4 ^ u.l4)
v.l4 ^= t
u.l4 ^= t
}
// IsNegative returns 1 if v is negative, and 0 otherwise.
func (v *Element) IsNegative() int {
return int(v.Bytes()[0] & 1)
}
// Absolute sets v to |u|, and returns v.
func (v *Element) Absolute(u *Element) *Element {
return v.Select(new(Element).Negate(u), u, u.IsNegative())
}
// Multiply sets v = x * y, and returns v.
func (v *Element) Multiply(x, y *Element) *Element {
feMul(v, x, y)
return v
}
// Square sets v = x * x, and returns v.
func (v *Element) Square(x *Element) *Element {
feSquare(v, x)
return v
}
// Mult32 sets v = x * y, and returns v.
func (v *Element) Mult32(x *Element, y uint32) *Element {
x0lo, x0hi := mul51(x.l0, y)
x1lo, x1hi := mul51(x.l1, y)
x2lo, x2hi := mul51(x.l2, y)
x3lo, x3hi := mul51(x.l3, y)
x4lo, x4hi := mul51(x.l4, y)
v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
v.l1 = x1lo + x0hi
v.l2 = x2lo + x1hi
v.l3 = x3lo + x2hi
v.l4 = x4lo + x3hi
// The hi portions are going to be only 32 bits, plus any previous excess,
// so we can skip the carry propagation.
return v
}
// mul51 returns lo + hi * 2⁵¹ = a * b.
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
mh, ml := bits.Mul64(a, uint64(b))
lo = ml & maskLow51Bits
hi = (mh << 13) | (ml >> 51)
return
}
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
func (v *Element) Pow22523(x *Element) *Element {
var t0, t1, t2 Element
t0.Square(x) // x^2
t1.Square(&t0) // x^4
t1.Square(&t1) // x^8
t1.Multiply(x, &t1) // x^9
t0.Multiply(&t0, &t1) // x^11
t0.Square(&t0) // x^22
t0.Multiply(&t1, &t0) // x^31
t1.Square(&t0) // x^62
for i := 1; i < 5; i++ { // x^992
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
t1.Square(&t0) // 2^11 - 2
for i := 1; i < 10; i++ { // 2^20 - 2^10
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^20 - 1
t2.Square(&t1) // 2^21 - 2
for i := 1; i < 20; i++ { // 2^40 - 2^20
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^40 - 1
t1.Square(&t1) // 2^41 - 2
for i := 1; i < 10; i++ { // 2^50 - 2^10
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^50 - 1
t1.Square(&t0) // 2^51 - 2
for i := 1; i < 50; i++ { // 2^100 - 2^50
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^100 - 1
t2.Square(&t1) // 2^101 - 2
for i := 1; i < 100; i++ { // 2^200 - 2^100
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^200 - 1
t1.Square(&t1) // 2^201 - 2
for i := 1; i < 50; i++ { // 2^250 - 2^50
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^250 - 1
t0.Square(&t0) // 2^251 - 2
t0.Square(&t0) // 2^252 - 4
return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
}
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
var sqrtM1 = &Element{1718705420411056, 234908883556509,
2233514472574048, 2117202627021982, 765476049583133}
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
//
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
// and returns r and 0.
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
var a, b Element
// r = (u * v3) * (u * v7)^((p-5)/8)
v2 := a.Square(v)
uv3 := b.Multiply(u, b.Multiply(v2, v))
uv7 := a.Multiply(uv3, a.Square(v2))
r.Multiply(uv3, r.Pow22523(uv7))
check := a.Multiply(v, a.Square(r)) // check = v * r^2
uNeg := b.Negate(u)
correctSignSqrt := check.Equal(u)
flippedSignSqrt := check.Equal(uNeg)
flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
r.Absolute(r) // Choose the nonnegative square root.
return r, correctSignSqrt | flippedSignSqrt
}
|