summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/arch/arm/armasm/inst.go
blob: 60d633bdb6c26a3a92710bd0e38d5325c38f3ace (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// Copyright 2014 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package armasm

import (
	"bytes"
	"fmt"
)

// A Mode is an instruction execution mode.
type Mode int

const (
	_ Mode = iota
	ModeARM
	ModeThumb
)

func (m Mode) String() string {
	switch m {
	case ModeARM:
		return "ARM"
	case ModeThumb:
		return "Thumb"
	}
	return fmt.Sprintf("Mode(%d)", int(m))
}

// An Op is an ARM opcode.
type Op uint16

// NOTE: The actual Op values are defined in tables.go.
// They are chosen to simplify instruction decoding and
// are not a dense packing from 0 to N, although the
// density is high, probably at least 90%.

func (op Op) String() string {
	if op >= Op(len(opstr)) || opstr[op] == "" {
		return fmt.Sprintf("Op(%d)", int(op))
	}
	return opstr[op]
}

// An Inst is a single instruction.
type Inst struct {
	Op   Op     // Opcode mnemonic
	Enc  uint32 // Raw encoding bits.
	Len  int    // Length of encoding in bytes.
	Args Args   // Instruction arguments, in ARM manual order.
}

func (i Inst) String() string {
	var buf bytes.Buffer
	buf.WriteString(i.Op.String())
	for j, arg := range i.Args {
		if arg == nil {
			break
		}
		if j == 0 {
			buf.WriteString(" ")
		} else {
			buf.WriteString(", ")
		}
		buf.WriteString(arg.String())
	}
	return buf.String()
}

// An Args holds the instruction arguments.
// If an instruction has fewer than 4 arguments,
// the final elements in the array are nil.
type Args [4]Arg

// An Arg is a single instruction argument, one of these types:
// Endian, Imm, Mem, PCRel, Reg, RegList, RegShift, RegShiftReg.
type Arg interface {
	IsArg()
	String() string
}

type Float32Imm float32

func (Float32Imm) IsArg() {}

func (f Float32Imm) String() string {
	return fmt.Sprintf("#%v", float32(f))
}

type Float64Imm float32

func (Float64Imm) IsArg() {}

func (f Float64Imm) String() string {
	return fmt.Sprintf("#%v", float64(f))
}

// An Imm is an integer constant.
type Imm uint32

func (Imm) IsArg() {}

func (i Imm) String() string {
	return fmt.Sprintf("#%#x", uint32(i))
}

// A ImmAlt is an alternate encoding of an integer constant.
type ImmAlt struct {
	Val uint8
	Rot uint8
}

func (ImmAlt) IsArg() {}

func (i ImmAlt) Imm() Imm {
	v := uint32(i.Val)
	r := uint(i.Rot)
	return Imm(v>>r | v<<(32-r))
}

func (i ImmAlt) String() string {
	return fmt.Sprintf("#%#x, %d", i.Val, i.Rot)
}

// A Label is a text (code) address.
type Label uint32

func (Label) IsArg() {}

func (i Label) String() string {
	return fmt.Sprintf("%#x", uint32(i))
}

// A Reg is a single register.
// The zero value denotes R0, not the absence of a register.
type Reg uint8

const (
	R0 Reg = iota
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	R12
	R13
	R14
	R15

	S0
	S1
	S2
	S3
	S4
	S5
	S6
	S7
	S8
	S9
	S10
	S11
	S12
	S13
	S14
	S15
	S16
	S17
	S18
	S19
	S20
	S21
	S22
	S23
	S24
	S25
	S26
	S27
	S28
	S29
	S30
	S31

	D0
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	D8
	D9
	D10
	D11
	D12
	D13
	D14
	D15
	D16
	D17
	D18
	D19
	D20
	D21
	D22
	D23
	D24
	D25
	D26
	D27
	D28
	D29
	D30
	D31

	APSR
	APSR_nzcv
	FPSCR

	SP = R13
	LR = R14
	PC = R15
)

func (Reg) IsArg() {}

func (r Reg) String() string {
	switch r {
	case APSR:
		return "APSR"
	case APSR_nzcv:
		return "APSR_nzcv"
	case FPSCR:
		return "FPSCR"
	case SP:
		return "SP"
	case PC:
		return "PC"
	case LR:
		return "LR"
	}
	if R0 <= r && r <= R15 {
		return fmt.Sprintf("R%d", int(r-R0))
	}
	if S0 <= r && r <= S31 {
		return fmt.Sprintf("S%d", int(r-S0))
	}
	if D0 <= r && r <= D31 {
		return fmt.Sprintf("D%d", int(r-D0))
	}
	return fmt.Sprintf("Reg(%d)", int(r))
}

// A RegX represents a fraction of a multi-value register.
// The Index field specifies the index number,
// but the size of the fraction is not specified.
// It must be inferred from the instruction and the register type.
// For example, in a VMOV instruction, RegX{D5, 1} represents
// the top 32 bits of the 64-bit D5 register.
type RegX struct {
	Reg   Reg
	Index int
}

func (RegX) IsArg() {}

func (r RegX) String() string {
	return fmt.Sprintf("%s[%d]", r.Reg, r.Index)
}

// A RegList is a register list.
// Bits at indexes x = 0 through 15 indicate whether the corresponding Rx register is in the list.
type RegList uint16

func (RegList) IsArg() {}

func (r RegList) String() string {
	var buf bytes.Buffer
	fmt.Fprintf(&buf, "{")
	sep := ""
	for i := 0; i < 16; i++ {
		if r&(1<<uint(i)) != 0 {
			fmt.Fprintf(&buf, "%s%s", sep, Reg(i).String())
			sep = ","
		}
	}
	fmt.Fprintf(&buf, "}")
	return buf.String()
}

// An Endian is the argument to the SETEND instruction.
type Endian uint8

const (
	LittleEndian Endian = 0
	BigEndian    Endian = 1
)

func (Endian) IsArg() {}

func (e Endian) String() string {
	if e != 0 {
		return "BE"
	}
	return "LE"
}

// A Shift describes an ARM shift operation.
type Shift uint8

const (
	ShiftLeft        Shift = 0 // left shift
	ShiftRight       Shift = 1 // logical (unsigned) right shift
	ShiftRightSigned Shift = 2 // arithmetic (signed) right shift
	RotateRight      Shift = 3 // right rotate
	RotateRightExt   Shift = 4 // right rotate through carry (Count will always be 1)
)

var shiftName = [...]string{
	"LSL", "LSR", "ASR", "ROR", "RRX",
}

func (s Shift) String() string {
	if s < 5 {
		return shiftName[s]
	}
	return fmt.Sprintf("Shift(%d)", int(s))
}

// A RegShift is a register shifted by a constant.
type RegShift struct {
	Reg   Reg
	Shift Shift
	Count uint8
}

func (RegShift) IsArg() {}

func (r RegShift) String() string {
	return fmt.Sprintf("%s %s #%d", r.Reg, r.Shift, r.Count)
}

// A RegShiftReg is a register shifted by a register.
type RegShiftReg struct {
	Reg      Reg
	Shift    Shift
	RegCount Reg
}

func (RegShiftReg) IsArg() {}

func (r RegShiftReg) String() string {
	return fmt.Sprintf("%s %s %s", r.Reg, r.Shift, r.RegCount)
}

// A PCRel describes a memory address (usually a code label)
// as a distance relative to the program counter.
// TODO(rsc): Define which program counter (PC+4? PC+8? PC?).
type PCRel int32

func (PCRel) IsArg() {}

func (r PCRel) String() string {
	return fmt.Sprintf("PC%+#x", int32(r))
}

// An AddrMode is an ARM addressing mode.
type AddrMode uint8

const (
	_             AddrMode = iota
	AddrPostIndex          // [R], X – use address R, set R = R + X
	AddrPreIndex           // [R, X]! – use address R + X, set R = R + X
	AddrOffset             // [R, X] – use address R + X
	AddrLDM                // R – [R] but formats as R, for LDM/STM only
	AddrLDM_WB             // R! - [R], X where X is instruction-specific amount, for LDM/STM only
)

// A Mem is a memory reference made up of a base R and index expression X.
// The effective memory address is R or R+X depending on AddrMode.
// The index expression is X = Sign*(Index Shift Count) + Offset,
// but in any instruction either Sign = 0 or Offset = 0.
type Mem struct {
	Base   Reg
	Mode   AddrMode
	Sign   int8
	Index  Reg
	Shift  Shift
	Count  uint8
	Offset int16
}

func (Mem) IsArg() {}

func (m Mem) String() string {
	R := m.Base.String()
	X := ""
	if m.Sign != 0 {
		X = "+"
		if m.Sign < 0 {
			X = "-"
		}
		X += m.Index.String()
		if m.Shift != ShiftLeft || m.Count != 0 {
			X += fmt.Sprintf(", %s #%d", m.Shift, m.Count)
		}
	} else {
		X = fmt.Sprintf("#%d", m.Offset)
	}

	switch m.Mode {
	case AddrOffset:
		if X == "#0" {
			return fmt.Sprintf("[%s]", R)
		}
		return fmt.Sprintf("[%s, %s]", R, X)
	case AddrPreIndex:
		return fmt.Sprintf("[%s, %s]!", R, X)
	case AddrPostIndex:
		return fmt.Sprintf("[%s], %s", R, X)
	case AddrLDM:
		if X == "#0" {
			return R
		}
	case AddrLDM_WB:
		if X == "#0" {
			return R + "!"
		}
	}
	return fmt.Sprintf("[%s Mode(%d) %s]", R, int(m.Mode), X)
}