summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/arch/arm/armasm/decode.go
blob: 6b4d73841be7357be6730ecfe9c05fae4b4d18a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright 2014 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package armasm

import (
	"encoding/binary"
	"fmt"
)

// An instFormat describes the format of an instruction encoding.
// An instruction with 32-bit value x matches the format if x&mask == value
// and the condition matches.
// The condition matches if x>>28 == 0xF && value>>28==0xF
// or if x>>28 != 0xF and value>>28 == 0.
// If x matches the format, then the rest of the fields describe how to interpret x.
// The opBits describe bits that should be extracted from x and added to the opcode.
// For example opBits = 0x1234 means that the value
//	(2 bits at offset 1) followed by (4 bits at offset 3)
// should be added to op.
// Finally the args describe how to decode the instruction arguments.
// args is stored as a fixed-size array; if there are fewer than len(args) arguments,
// args[i] == 0 marks the end of the argument list.
type instFormat struct {
	mask     uint32
	value    uint32
	priority int8
	op       Op
	opBits   uint64
	args     instArgs
}

type instArgs [4]instArg

var (
	errMode    = fmt.Errorf("unsupported execution mode")
	errShort   = fmt.Errorf("truncated instruction")
	errUnknown = fmt.Errorf("unknown instruction")
)

var decoderCover []bool

// Decode decodes the leading bytes in src as a single instruction.
func Decode(src []byte, mode Mode) (inst Inst, err error) {
	if mode != ModeARM {
		return Inst{}, errMode
	}
	if len(src) < 4 {
		return Inst{}, errShort
	}

	if decoderCover == nil {
		decoderCover = make([]bool, len(instFormats))
	}

	x := binary.LittleEndian.Uint32(src)

	// The instFormat table contains both conditional and unconditional instructions.
	// Considering only the top 4 bits, the conditional instructions use mask=0, value=0,
	// while the unconditional instructions use mask=f, value=f.
	// Prepare a version of x with the condition cleared to 0 in conditional instructions
	// and then assume mask=f during matching.
	const condMask = 0xf0000000
	xNoCond := x
	if x&condMask != condMask {
		xNoCond &^= condMask
	}
	var priority int8
Search:
	for i := range instFormats {
		f := &instFormats[i]
		if xNoCond&(f.mask|condMask) != f.value || f.priority <= priority {
			continue
		}
		delta := uint32(0)
		deltaShift := uint(0)
		for opBits := f.opBits; opBits != 0; opBits >>= 16 {
			n := uint(opBits & 0xFF)
			off := uint((opBits >> 8) & 0xFF)
			delta |= (x >> off) & (1<<n - 1) << deltaShift
			deltaShift += n
		}
		op := f.op + Op(delta)

		// Special case: BKPT encodes with condition but cannot have one.
		if op&^15 == BKPT_EQ && op != BKPT {
			continue Search
		}

		var args Args
		for j, aop := range f.args {
			if aop == 0 {
				break
			}
			arg := decodeArg(aop, x)
			if arg == nil { // cannot decode argument
				continue Search
			}
			args[j] = arg
		}

		decoderCover[i] = true

		inst = Inst{
			Op:   op,
			Args: args,
			Enc:  x,
			Len:  4,
		}
		priority = f.priority
		continue Search
	}
	if inst.Op != 0 {
		return inst, nil
	}
	return Inst{}, errUnknown
}

// An instArg describes the encoding of a single argument.
// In the names used for arguments, _p_ means +, _m_ means -,
// _pm_ means ± (usually keyed by the U bit).
// The _W suffix indicates a general addressing mode based on the P and W bits.
// The _offset and _postindex suffixes force the given addressing mode.
// The rest should be somewhat self-explanatory, at least given
// the decodeArg function.
type instArg uint8

const (
	_ instArg = iota
	arg_APSR
	arg_FPSCR
	arg_Dn_half
	arg_R1_0
	arg_R1_12
	arg_R2_0
	arg_R2_12
	arg_R_0
	arg_R_12
	arg_R_12_nzcv
	arg_R_16
	arg_R_16_WB
	arg_R_8
	arg_R_rotate
	arg_R_shift_R
	arg_R_shift_imm
	arg_SP
	arg_Sd
	arg_Sd_Dd
	arg_Dd_Sd
	arg_Sm
	arg_Sm_Dm
	arg_Sn
	arg_Sn_Dn
	arg_const
	arg_endian
	arg_fbits
	arg_fp_0
	arg_imm24
	arg_imm5
	arg_imm5_32
	arg_imm5_nz
	arg_imm_12at8_4at0
	arg_imm_4at16_12at0
	arg_imm_vfp
	arg_label24
	arg_label24H
	arg_label_m_12
	arg_label_p_12
	arg_label_pm_12
	arg_label_pm_4_4
	arg_lsb_width
	arg_mem_R
	arg_mem_R_pm_R_W
	arg_mem_R_pm_R_postindex
	arg_mem_R_pm_R_shift_imm_W
	arg_mem_R_pm_R_shift_imm_offset
	arg_mem_R_pm_R_shift_imm_postindex
	arg_mem_R_pm_imm12_W
	arg_mem_R_pm_imm12_offset
	arg_mem_R_pm_imm12_postindex
	arg_mem_R_pm_imm8_W
	arg_mem_R_pm_imm8_postindex
	arg_mem_R_pm_imm8at0_offset
	arg_option
	arg_registers
	arg_registers1
	arg_registers2
	arg_satimm4
	arg_satimm5
	arg_satimm4m1
	arg_satimm5m1
	arg_widthm1
)

// decodeArg decodes the arg described by aop from the instruction bits x.
// It returns nil if x cannot be decoded according to aop.
func decodeArg(aop instArg, x uint32) Arg {
	switch aop {
	default:
		return nil

	case arg_APSR:
		return APSR
	case arg_FPSCR:
		return FPSCR

	case arg_R_0:
		return Reg(x & (1<<4 - 1))
	case arg_R_8:
		return Reg((x >> 8) & (1<<4 - 1))
	case arg_R_12:
		return Reg((x >> 12) & (1<<4 - 1))
	case arg_R_16:
		return Reg((x >> 16) & (1<<4 - 1))

	case arg_R_12_nzcv:
		r := Reg((x >> 12) & (1<<4 - 1))
		if r == R15 {
			return APSR_nzcv
		}
		return r

	case arg_R_16_WB:
		mode := AddrLDM
		if (x>>21)&1 != 0 {
			mode = AddrLDM_WB
		}
		return Mem{Base: Reg((x >> 16) & (1<<4 - 1)), Mode: mode}

	case arg_R_rotate:
		Rm := Reg(x & (1<<4 - 1))
		typ, count := decodeShift(x)
		// ROR #0 here means ROR #0, but decodeShift rewrites to RRX #1.
		if typ == RotateRightExt {
			return Reg(Rm)
		}
		return RegShift{Rm, typ, uint8(count)}

	case arg_R_shift_R:
		Rm := Reg(x & (1<<4 - 1))
		Rs := Reg((x >> 8) & (1<<4 - 1))
		typ := Shift((x >> 5) & (1<<2 - 1))
		return RegShiftReg{Rm, typ, Rs}

	case arg_R_shift_imm:
		Rm := Reg(x & (1<<4 - 1))
		typ, count := decodeShift(x)
		if typ == ShiftLeft && count == 0 {
			return Reg(Rm)
		}
		return RegShift{Rm, typ, uint8(count)}

	case arg_R1_0:
		return Reg((x & (1<<4 - 1)))
	case arg_R1_12:
		return Reg(((x >> 12) & (1<<4 - 1)))
	case arg_R2_0:
		return Reg((x & (1<<4 - 1)) | 1)
	case arg_R2_12:
		return Reg(((x >> 12) & (1<<4 - 1)) | 1)

	case arg_SP:
		return SP

	case arg_Sd_Dd:
		v := (x >> 12) & (1<<4 - 1)
		vx := (x >> 22) & 1
		sz := (x >> 8) & 1
		if sz != 0 {
			return D0 + Reg(vx<<4+v)
		} else {
			return S0 + Reg(v<<1+vx)
		}

	case arg_Dd_Sd:
		return decodeArg(arg_Sd_Dd, x^(1<<8))

	case arg_Sd:
		v := (x >> 12) & (1<<4 - 1)
		vx := (x >> 22) & 1
		return S0 + Reg(v<<1+vx)

	case arg_Sm_Dm:
		v := (x >> 0) & (1<<4 - 1)
		vx := (x >> 5) & 1
		sz := (x >> 8) & 1
		if sz != 0 {
			return D0 + Reg(vx<<4+v)
		} else {
			return S0 + Reg(v<<1+vx)
		}

	case arg_Sm:
		v := (x >> 0) & (1<<4 - 1)
		vx := (x >> 5) & 1
		return S0 + Reg(v<<1+vx)

	case arg_Dn_half:
		v := (x >> 16) & (1<<4 - 1)
		vx := (x >> 7) & 1
		return RegX{D0 + Reg(vx<<4+v), int((x >> 21) & 1)}

	case arg_Sn_Dn:
		v := (x >> 16) & (1<<4 - 1)
		vx := (x >> 7) & 1
		sz := (x >> 8) & 1
		if sz != 0 {
			return D0 + Reg(vx<<4+v)
		} else {
			return S0 + Reg(v<<1+vx)
		}

	case arg_Sn:
		v := (x >> 16) & (1<<4 - 1)
		vx := (x >> 7) & 1
		return S0 + Reg(v<<1+vx)

	case arg_const:
		v := x & (1<<8 - 1)
		rot := (x >> 8) & (1<<4 - 1) * 2
		if rot > 0 && v&3 == 0 {
			// could rotate less
			return ImmAlt{uint8(v), uint8(rot)}
		}
		if rot >= 24 && ((v<<(32-rot))&0xFF)>>(32-rot) == v {
			// could wrap around to rot==0.
			return ImmAlt{uint8(v), uint8(rot)}
		}
		return Imm(v>>rot | v<<(32-rot))

	case arg_endian:
		return Endian((x >> 9) & 1)

	case arg_fbits:
		return Imm((16 << ((x >> 7) & 1)) - ((x&(1<<4-1))<<1 | (x>>5)&1))

	case arg_fp_0:
		return Imm(0)

	case arg_imm24:
		return Imm(x & (1<<24 - 1))

	case arg_imm5:
		return Imm((x >> 7) & (1<<5 - 1))

	case arg_imm5_32:
		x = (x >> 7) & (1<<5 - 1)
		if x == 0 {
			x = 32
		}
		return Imm(x)

	case arg_imm5_nz:
		x = (x >> 7) & (1<<5 - 1)
		if x == 0 {
			return nil
		}
		return Imm(x)

	case arg_imm_4at16_12at0:
		return Imm((x>>16)&(1<<4-1)<<12 | x&(1<<12-1))

	case arg_imm_12at8_4at0:
		return Imm((x>>8)&(1<<12-1)<<4 | x&(1<<4-1))

	case arg_imm_vfp:
		x = (x>>16)&(1<<4-1)<<4 | x&(1<<4-1)
		return Imm(x)

	case arg_label24:
		imm := (x & (1<<24 - 1)) << 2
		return PCRel(int32(imm<<6) >> 6)

	case arg_label24H:
		h := (x >> 24) & 1
		imm := (x&(1<<24-1))<<2 | h<<1
		return PCRel(int32(imm<<6) >> 6)

	case arg_label_m_12:
		d := int32(x & (1<<12 - 1))
		return Mem{Base: PC, Mode: AddrOffset, Offset: int16(-d)}

	case arg_label_p_12:
		d := int32(x & (1<<12 - 1))
		return Mem{Base: PC, Mode: AddrOffset, Offset: int16(d)}

	case arg_label_pm_12:
		d := int32(x & (1<<12 - 1))
		u := (x >> 23) & 1
		if u == 0 {
			d = -d
		}
		return Mem{Base: PC, Mode: AddrOffset, Offset: int16(d)}

	case arg_label_pm_4_4:
		d := int32((x>>8)&(1<<4-1)<<4 | x&(1<<4-1))
		u := (x >> 23) & 1
		if u == 0 {
			d = -d
		}
		return PCRel(d)

	case arg_lsb_width:
		lsb := (x >> 7) & (1<<5 - 1)
		msb := (x >> 16) & (1<<5 - 1)
		if msb < lsb || msb >= 32 {
			return nil
		}
		return Imm(msb + 1 - lsb)

	case arg_mem_R:
		Rn := Reg((x >> 16) & (1<<4 - 1))
		return Mem{Base: Rn, Mode: AddrOffset}

	case arg_mem_R_pm_R_postindex:
		// Treat [<Rn>],+/-<Rm> like [<Rn>,+/-<Rm>{,<shift>}]{!}
		// by forcing shift bits to <<0 and P=0, W=0 (postindex=true).
		return decodeArg(arg_mem_R_pm_R_shift_imm_W, x&^((1<<7-1)<<5|1<<24|1<<21))

	case arg_mem_R_pm_R_W:
		// Treat [<Rn>,+/-<Rm>]{!} like [<Rn>,+/-<Rm>{,<shift>}]{!}
		// by forcing shift bits to <<0.
		return decodeArg(arg_mem_R_pm_R_shift_imm_W, x&^((1<<7-1)<<5))

	case arg_mem_R_pm_R_shift_imm_offset:
		// Treat [<Rn>],+/-<Rm>{,<shift>} like [<Rn>,+/-<Rm>{,<shift>}]{!}
		// by forcing P=1, W=0 (index=false, wback=false).
		return decodeArg(arg_mem_R_pm_R_shift_imm_W, x&^(1<<21)|1<<24)

	case arg_mem_R_pm_R_shift_imm_postindex:
		// Treat [<Rn>],+/-<Rm>{,<shift>} like [<Rn>,+/-<Rm>{,<shift>}]{!}
		// by forcing P=0, W=0 (postindex=true).
		return decodeArg(arg_mem_R_pm_R_shift_imm_W, x&^(1<<24|1<<21))

	case arg_mem_R_pm_R_shift_imm_W:
		Rn := Reg((x >> 16) & (1<<4 - 1))
		Rm := Reg(x & (1<<4 - 1))
		typ, count := decodeShift(x)
		u := (x >> 23) & 1
		w := (x >> 21) & 1
		p := (x >> 24) & 1
		if p == 0 && w == 1 {
			return nil
		}
		sign := int8(+1)
		if u == 0 {
			sign = -1
		}
		mode := AddrMode(uint8(p<<1) | uint8(w^1))
		return Mem{Base: Rn, Mode: mode, Sign: sign, Index: Rm, Shift: typ, Count: count}

	case arg_mem_R_pm_imm12_offset:
		// Treat [<Rn>,#+/-<imm12>] like [<Rn>{,#+/-<imm12>}]{!}
		// by forcing P=1, W=0 (index=false, wback=false).
		return decodeArg(arg_mem_R_pm_imm12_W, x&^(1<<21)|1<<24)

	case arg_mem_R_pm_imm12_postindex:
		// Treat [<Rn>],#+/-<imm12> like [<Rn>{,#+/-<imm12>}]{!}
		// by forcing P=0, W=0 (postindex=true).
		return decodeArg(arg_mem_R_pm_imm12_W, x&^(1<<24|1<<21))

	case arg_mem_R_pm_imm12_W:
		Rn := Reg((x >> 16) & (1<<4 - 1))
		u := (x >> 23) & 1
		w := (x >> 21) & 1
		p := (x >> 24) & 1
		if p == 0 && w == 1 {
			return nil
		}
		sign := int8(+1)
		if u == 0 {
			sign = -1
		}
		imm := int16(x & (1<<12 - 1))
		mode := AddrMode(uint8(p<<1) | uint8(w^1))
		return Mem{Base: Rn, Mode: mode, Offset: int16(sign) * imm}

	case arg_mem_R_pm_imm8_postindex:
		// Treat [<Rn>],#+/-<imm8> like [<Rn>{,#+/-<imm8>}]{!}
		// by forcing P=0, W=0 (postindex=true).
		return decodeArg(arg_mem_R_pm_imm8_W, x&^(1<<24|1<<21))

	case arg_mem_R_pm_imm8_W:
		Rn := Reg((x >> 16) & (1<<4 - 1))
		u := (x >> 23) & 1
		w := (x >> 21) & 1
		p := (x >> 24) & 1
		if p == 0 && w == 1 {
			return nil
		}
		sign := int8(+1)
		if u == 0 {
			sign = -1
		}
		imm := int16((x>>8)&(1<<4-1)<<4 | x&(1<<4-1))
		mode := AddrMode(uint8(p<<1) | uint8(w^1))
		return Mem{Base: Rn, Mode: mode, Offset: int16(sign) * imm}

	case arg_mem_R_pm_imm8at0_offset:
		Rn := Reg((x >> 16) & (1<<4 - 1))
		u := (x >> 23) & 1
		sign := int8(+1)
		if u == 0 {
			sign = -1
		}
		imm := int16(x&(1<<8-1)) << 2
		return Mem{Base: Rn, Mode: AddrOffset, Offset: int16(sign) * imm}

	case arg_option:
		return Imm(x & (1<<4 - 1))

	case arg_registers:
		return RegList(x & (1<<16 - 1))

	case arg_registers2:
		x &= 1<<16 - 1
		n := 0
		for i := 0; i < 16; i++ {
			if x>>uint(i)&1 != 0 {
				n++
			}
		}
		if n < 2 {
			return nil
		}
		return RegList(x)

	case arg_registers1:
		Rt := (x >> 12) & (1<<4 - 1)
		return RegList(1 << Rt)

	case arg_satimm4:
		return Imm((x >> 16) & (1<<4 - 1))

	case arg_satimm5:
		return Imm((x >> 16) & (1<<5 - 1))

	case arg_satimm4m1:
		return Imm((x>>16)&(1<<4-1) + 1)

	case arg_satimm5m1:
		return Imm((x>>16)&(1<<5-1) + 1)

	case arg_widthm1:
		return Imm((x>>16)&(1<<5-1) + 1)

	}
}

// decodeShift decodes the shift-by-immediate encoded in x.
func decodeShift(x uint32) (Shift, uint8) {
	count := (x >> 7) & (1<<5 - 1)
	typ := Shift((x >> 5) & (1<<2 - 1))
	switch typ {
	case ShiftRight, ShiftRightSigned:
		if count == 0 {
			count = 32
		}
	case RotateRight:
		if count == 0 {
			typ = RotateRightExt
			count = 1
		}
	}
	return typ, uint8(count)
}