summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/sizeofint/webpanimation/enc_frame_enc.c
blob: 2919ee970988aafe56e991869d2a4cd8bde8aa82 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
//   frame coding and analysis
//
// Author: Skal (pascal.massimino@gmail.com)

#include <string.h>
#include <math.h>

#include "enc_cost_enc.h"
#include "enc_vp8i_enc.h"
#include "dsp_dsp.h"
#include "webp_format_constants.h"

#define SEGMENT_VISU 0
#define DEBUG_SEARCH 0    // useful to track search convergence

//------------------------------------------------------------------------------
// multi-pass convergence

#define HEADER_SIZE_ESTIMATE (RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE +  \
                              VP8_FRAME_HEADER_SIZE)
#define DQ_LIMIT 0.4  // convergence is considered reached if dq < DQ_LIMIT
// we allow 2k of extra head-room in PARTITION0 limit.
#define PARTITION0_SIZE_LIMIT ((VP8_MAX_PARTITION0_SIZE - 2048ULL) << 11)

static float Clamp(float v, float min, float max) {
  return (v < min) ? min : (v > max) ? max : v;
}

typedef struct {  // struct for organizing convergence in either size or PSNR
  int is_first;
  float dq;
  float q, last_q;
  float qmin, qmax;
  double value, last_value;   // PSNR or size
  double target;
  int do_size_search;
} PassStats;

static int InitPassStats(const VP8Encoder* const enc, PassStats* const s) {
  const uint64_t target_size = (uint64_t)enc->config_->target_size;
  const int do_size_search = (target_size != 0);
  const float target_PSNR = enc->config_->target_PSNR;

  s->is_first = 1;
  s->dq = 10.f;
  s->qmin = 1.f * enc->config_->qmin;
  s->qmax = 1.f * enc->config_->qmax;
  s->q = s->last_q = Clamp(enc->config_->quality, s->qmin, s->qmax);
  s->target = do_size_search ? (double)target_size
            : (target_PSNR > 0.) ? target_PSNR
            : 40.;   // default, just in case
  s->value = s->last_value = 0.;
  s->do_size_search = do_size_search;
  return do_size_search;
}

static float ComputeNextQ(PassStats* const s) {
  float dq;
  if (s->is_first) {
    dq = (s->value > s->target) ? -s->dq : s->dq;
    s->is_first = 0;
  } else if (s->value != s->last_value) {
    const double slope = (s->target - s->value) / (s->last_value - s->value);
    dq = (float)(slope * (s->last_q - s->q));
  } else {
    dq = 0.;  // we're done?!
  }
  // Limit variable to avoid large swings.
  s->dq = Clamp(dq, -30.f, 30.f);
  s->last_q = s->q;
  s->last_value = s->value;
  s->q = Clamp(s->q + s->dq, s->qmin, s->qmax);
  return s->q;
}

//------------------------------------------------------------------------------
// Tables for level coding

const uint8_t VP8Cat3[] = { 173, 148, 140 };
const uint8_t VP8Cat4[] = { 176, 155, 140, 135 };
const uint8_t VP8Cat5[] = { 180, 157, 141, 134, 130 };
const uint8_t VP8Cat6[] =
    { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 };

//------------------------------------------------------------------------------
// Reset the statistics about: number of skips, token proba, level cost,...

static void ResetStats(VP8Encoder* const enc) {
  VP8EncProba* const proba = &enc->proba_;
  VP8CalculateLevelCosts(proba);
  proba->nb_skip_ = 0;
}

//------------------------------------------------------------------------------
// Skip decision probability

#define SKIP_PROBA_THRESHOLD 250  // value below which using skip_proba is OK.

static int CalcSkipProba(uint64_t nb, uint64_t total) {
  return (int)(total ? (total - nb) * 255 / total : 255);
}

// Returns the bit-cost for coding the skip probability.
static int FinalizeSkipProba(VP8Encoder* const enc) {
  VP8EncProba* const proba = &enc->proba_;
  const int nb_mbs = enc->mb_w_ * enc->mb_h_;
  const int nb_events = proba->nb_skip_;
  int size;
  proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs);
  proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD);
  size = 256;   // 'use_skip_proba' bit
  if (proba->use_skip_proba_) {
    size +=  nb_events * VP8BitCost(1, proba->skip_proba_)
         + (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_);
    size += 8 * 256;   // cost of signaling the skip_proba_ itself.
  }
  return size;
}

// Collect statistics and deduce probabilities for next coding pass.
// Return the total bit-cost for coding the probability updates.
static int CalcTokenProba(int nb, int total) {
  assert(nb <= total);
  return nb ? (255 - nb * 255 / total) : 255;
}

// Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability.
static int BranchCost(int nb, int total, int proba) {
  return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba);
}

static void ResetTokenStats(VP8Encoder* const enc) {
  VP8EncProba* const proba = &enc->proba_;
  memset(proba->stats_, 0, sizeof(proba->stats_));
}

static int FinalizeTokenProbas(VP8EncProba* const proba) {
  int has_changed = 0;
  int size = 0;
  int t, b, c, p;
  for (t = 0; t < NUM_TYPES; ++t) {
    for (b = 0; b < NUM_BANDS; ++b) {
      for (c = 0; c < NUM_CTX; ++c) {
        for (p = 0; p < NUM_PROBAS; ++p) {
          const proba_t stats = proba->stats_[t][b][c][p];
          const int nb = (stats >> 0) & 0xffff;
          const int total = (stats >> 16) & 0xffff;
          const int update_proba = VP8CoeffsUpdateProba[t][b][c][p];
          const int old_p = VP8CoeffsProba0[t][b][c][p];
          const int new_p = CalcTokenProba(nb, total);
          const int old_cost = BranchCost(nb, total, old_p)
                             + VP8BitCost(0, update_proba);
          const int new_cost = BranchCost(nb, total, new_p)
                             + VP8BitCost(1, update_proba)
                             + 8 * 256;
          const int use_new_p = (old_cost > new_cost);
          size += VP8BitCost(use_new_p, update_proba);
          if (use_new_p) {  // only use proba that seem meaningful enough.
            proba->coeffs_[t][b][c][p] = new_p;
            has_changed |= (new_p != old_p);
            size += 8 * 256;
          } else {
            proba->coeffs_[t][b][c][p] = old_p;
          }
        }
      }
    }
  }
  proba->dirty_ = has_changed;
  return size;
}

//------------------------------------------------------------------------------
// Finalize Segment probability based on the coding tree

static int GetProba(int a, int b) {
  const int total = a + b;
  return (total == 0) ? 255     // that's the default probability.
                      : (255 * a + total / 2) / total;  // rounded proba
}

static void ResetSegments(VP8Encoder* const enc) {
  int n;
  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    enc->mb_info_[n].segment_ = 0;
  }
}

static void SetSegmentProbas(VP8Encoder* const enc) {
  int p[NUM_MB_SEGMENTS] = { 0 };
  int n;

  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    const VP8MBInfo* const mb = &enc->mb_info_[n];
    ++p[mb->segment_];
  }
#if !defined(WEBP_DISABLE_STATS)
  if (enc->pic_->stats != NULL) {
    for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
      enc->pic_->stats->segment_size[n] = p[n];
    }
  }
#endif
  if (enc->segment_hdr_.num_segments_ > 1) {
    uint8_t* const probas = enc->proba_.segments_;
    probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
    probas[1] = GetProba(p[0], p[1]);
    probas[2] = GetProba(p[2], p[3]);

    enc->segment_hdr_.update_map_ =
        (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
    if (!enc->segment_hdr_.update_map_) ResetSegments(enc);
    enc->segment_hdr_.size_ =
        p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
        p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
        p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
        p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
  } else {
    enc->segment_hdr_.update_map_ = 0;
    enc->segment_hdr_.size_ = 0;
  }
}

//------------------------------------------------------------------------------
// Coefficient coding

static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) {
  int n = res->first;
  // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1
  const uint8_t* p = res->prob[n][ctx];
  if (!VP8PutBit(bw, res->last >= 0, p[0])) {
    return 0;
  }

  while (n < 16) {
    const int c = res->coeffs[n++];
    const int sign = c < 0;
    int v = sign ? -c : c;
    if (!VP8PutBit(bw, v != 0, p[1])) {
      p = res->prob[VP8EncBands[n]][0];
      continue;
    }
    if (!VP8PutBit(bw, v > 1, p[2])) {
      p = res->prob[VP8EncBands[n]][1];
    } else {
      if (!VP8PutBit(bw, v > 4, p[3])) {
        if (VP8PutBit(bw, v != 2, p[4])) {
          VP8PutBit(bw, v == 4, p[5]);
        }
      } else if (!VP8PutBit(bw, v > 10, p[6])) {
        if (!VP8PutBit(bw, v > 6, p[7])) {
          VP8PutBit(bw, v == 6, 159);
        } else {
          VP8PutBit(bw, v >= 9, 165);
          VP8PutBit(bw, !(v & 1), 145);
        }
      } else {
        int mask;
        const uint8_t* tab;
        if (v < 3 + (8 << 1)) {          // VP8Cat3  (3b)
          VP8PutBit(bw, 0, p[8]);
          VP8PutBit(bw, 0, p[9]);
          v -= 3 + (8 << 0);
          mask = 1 << 2;
          tab = VP8Cat3;
        } else if (v < 3 + (8 << 2)) {   // VP8Cat4  (4b)
          VP8PutBit(bw, 0, p[8]);
          VP8PutBit(bw, 1, p[9]);
          v -= 3 + (8 << 1);
          mask = 1 << 3;
          tab = VP8Cat4;
        } else if (v < 3 + (8 << 3)) {   // VP8Cat5  (5b)
          VP8PutBit(bw, 1, p[8]);
          VP8PutBit(bw, 0, p[10]);
          v -= 3 + (8 << 2);
          mask = 1 << 4;
          tab = VP8Cat5;
        } else {                         // VP8Cat6 (11b)
          VP8PutBit(bw, 1, p[8]);
          VP8PutBit(bw, 1, p[10]);
          v -= 3 + (8 << 3);
          mask = 1 << 10;
          tab = VP8Cat6;
        }
        while (mask) {
          VP8PutBit(bw, !!(v & mask), *tab++);
          mask >>= 1;
        }
      }
      p = res->prob[VP8EncBands[n]][2];
    }
    VP8PutBitUniform(bw, sign);
    if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) {
      return 1;   // EOB
    }
  }
  return 1;
}

static void CodeResiduals(VP8BitWriter* const bw, VP8EncIterator* const it,
                          const VP8ModeScore* const rd) {
  int x, y, ch;
  VP8Residual res;
  uint64_t pos1, pos2, pos3;
  const int i16 = (it->mb_->type_ == 1);
  const int segment = it->mb_->segment_;
  VP8Encoder* const enc = it->enc_;

  VP8IteratorNzToBytes(it);

  pos1 = VP8BitWriterPos(bw);
  if (i16) {
    VP8InitResidual(0, 1, enc, &res);
    VP8SetResidualCoeffs(rd->y_dc_levels, &res);
    it->top_nz_[8] = it->left_nz_[8] =
      PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res);
    VP8InitResidual(1, 0, enc, &res);
  } else {
    VP8InitResidual(0, 3, enc, &res);
  }

  // luma-AC
  for (y = 0; y < 4; ++y) {
    for (x = 0; x < 4; ++x) {
      const int ctx = it->top_nz_[x] + it->left_nz_[y];
      VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
      it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res);
    }
  }
  pos2 = VP8BitWriterPos(bw);

  // U/V
  VP8InitResidual(0, 2, enc, &res);
  for (ch = 0; ch <= 2; ch += 2) {
    for (y = 0; y < 2; ++y) {
      for (x = 0; x < 2; ++x) {
        const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
        VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
        it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
            PutCoeffs(bw, ctx, &res);
      }
    }
  }
  pos3 = VP8BitWriterPos(bw);
  it->luma_bits_ = pos2 - pos1;
  it->uv_bits_ = pos3 - pos2;
  it->bit_count_[segment][i16] += it->luma_bits_;
  it->bit_count_[segment][2] += it->uv_bits_;
  VP8IteratorBytesToNz(it);
}

// Same as CodeResiduals, but doesn't actually write anything.
// Instead, it just records the event distribution.
static void RecordResiduals(VP8EncIterator* const it,
                            const VP8ModeScore* const rd) {
  int x, y, ch;
  VP8Residual res;
  VP8Encoder* const enc = it->enc_;

  VP8IteratorNzToBytes(it);

  if (it->mb_->type_ == 1) {   // i16x16
    VP8InitResidual(0, 1, enc, &res);
    VP8SetResidualCoeffs(rd->y_dc_levels, &res);
    it->top_nz_[8] = it->left_nz_[8] =
      VP8RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res);
    VP8InitResidual(1, 0, enc, &res);
  } else {
    VP8InitResidual(0, 3, enc, &res);
  }

  // luma-AC
  for (y = 0; y < 4; ++y) {
    for (x = 0; x < 4; ++x) {
      const int ctx = it->top_nz_[x] + it->left_nz_[y];
      VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
      it->top_nz_[x] = it->left_nz_[y] = VP8RecordCoeffs(ctx, &res);
    }
  }

  // U/V
  VP8InitResidual(0, 2, enc, &res);
  for (ch = 0; ch <= 2; ch += 2) {
    for (y = 0; y < 2; ++y) {
      for (x = 0; x < 2; ++x) {
        const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
        VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
        it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
            VP8RecordCoeffs(ctx, &res);
      }
    }
  }

  VP8IteratorBytesToNz(it);
}

//------------------------------------------------------------------------------
// Token buffer

#if !defined(DISABLE_TOKEN_BUFFER)

static int RecordTokens(VP8EncIterator* const it, const VP8ModeScore* const rd,
                        VP8TBuffer* const tokens) {
  int x, y, ch;
  VP8Residual res;
  VP8Encoder* const enc = it->enc_;

  VP8IteratorNzToBytes(it);
  if (it->mb_->type_ == 1) {   // i16x16
    const int ctx = it->top_nz_[8] + it->left_nz_[8];
    VP8InitResidual(0, 1, enc, &res);
    VP8SetResidualCoeffs(rd->y_dc_levels, &res);
    it->top_nz_[8] = it->left_nz_[8] =
        VP8RecordCoeffTokens(ctx, &res, tokens);
    VP8InitResidual(1, 0, enc, &res);
  } else {
    VP8InitResidual(0, 3, enc, &res);
  }

  // luma-AC
  for (y = 0; y < 4; ++y) {
    for (x = 0; x < 4; ++x) {
      const int ctx = it->top_nz_[x] + it->left_nz_[y];
      VP8SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res);
      it->top_nz_[x] = it->left_nz_[y] =
          VP8RecordCoeffTokens(ctx, &res, tokens);
    }
  }

  // U/V
  VP8InitResidual(0, 2, enc, &res);
  for (ch = 0; ch <= 2; ch += 2) {
    for (y = 0; y < 2; ++y) {
      for (x = 0; x < 2; ++x) {
        const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
        VP8SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res);
        it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] =
            VP8RecordCoeffTokens(ctx, &res, tokens);
      }
    }
  }
  VP8IteratorBytesToNz(it);
  return !tokens->error_;
}

#endif    // !DISABLE_TOKEN_BUFFER

//------------------------------------------------------------------------------
// ExtraInfo map / Debug function

#if !defined(WEBP_DISABLE_STATS)

#if SEGMENT_VISU
static void SetBlock(uint8_t* p, int value, int size) {
  int y;
  for (y = 0; y < size; ++y) {
    memset(p, value, size);
    p += BPS;
  }
}
#endif

static void ResetSSE(VP8Encoder* const enc) {
  enc->sse_[0] = 0;
  enc->sse_[1] = 0;
  enc->sse_[2] = 0;
  // Note: enc->sse_[3] is managed by alpha.c
  enc->sse_count_ = 0;
}

static void StoreSSE(const VP8EncIterator* const it) {
  VP8Encoder* const enc = it->enc_;
  const uint8_t* const in = it->yuv_in_;
  const uint8_t* const out = it->yuv_out_;
  // Note: not totally accurate at boundary. And doesn't include in-loop filter.
  enc->sse_[0] += VP8SSE16x16(in + Y_OFF_ENC, out + Y_OFF_ENC);
  enc->sse_[1] += VP8SSE8x8(in + U_OFF_ENC, out + U_OFF_ENC);
  enc->sse_[2] += VP8SSE8x8(in + V_OFF_ENC, out + V_OFF_ENC);
  enc->sse_count_ += 16 * 16;
}

static void StoreSideInfo(const VP8EncIterator* const it) {
  VP8Encoder* const enc = it->enc_;
  const VP8MBInfo* const mb = it->mb_;
  WebPPicture* const pic = enc->pic_;

  if (pic->stats != NULL) {
    StoreSSE(it);
    enc->block_count_[0] += (mb->type_ == 0);
    enc->block_count_[1] += (mb->type_ == 1);
    enc->block_count_[2] += (mb->skip_ != 0);
  }

  if (pic->extra_info != NULL) {
    uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_];
    switch (pic->extra_info_type) {
      case 1: *info = mb->type_; break;
      case 2: *info = mb->segment_; break;
      case 3: *info = enc->dqm_[mb->segment_].quant_; break;
      case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break;
      case 5: *info = mb->uv_mode_; break;
      case 6: {
        const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3);
        *info = (b > 255) ? 255 : b; break;
      }
      case 7: *info = mb->alpha_; break;
      default: *info = 0; break;
    }
  }
#if SEGMENT_VISU  // visualize segments and prediction modes
  SetBlock(it->yuv_out_ + Y_OFF_ENC, mb->segment_ * 64, 16);
  SetBlock(it->yuv_out_ + U_OFF_ENC, it->preds_[0] * 64, 8);
  SetBlock(it->yuv_out_ + V_OFF_ENC, mb->uv_mode_ * 64, 8);
#endif
}

static void ResetSideInfo(const VP8EncIterator* const it) {
  VP8Encoder* const enc = it->enc_;
  WebPPicture* const pic = enc->pic_;
  if (pic->stats != NULL) {
    memset(enc->block_count_, 0, sizeof(enc->block_count_));
  }
  ResetSSE(enc);
}
#else  // defined(WEBP_DISABLE_STATS)
static void ResetSSE(VP8Encoder* const enc) {
  (void)enc;
}
static void StoreSideInfo(const VP8EncIterator* const it) {
  VP8Encoder* const enc = it->enc_;
  WebPPicture* const pic = enc->pic_;
  if (pic->extra_info != NULL) {
    if (it->x_ == 0 && it->y_ == 0) {   // only do it once, at start
      memset(pic->extra_info, 0,
             enc->mb_w_ * enc->mb_h_ * sizeof(*pic->extra_info));
    }
  }
}

static void ResetSideInfo(const VP8EncIterator* const it) {
  (void)it;
}
#endif  // !defined(WEBP_DISABLE_STATS)

static double GetPSNR(uint64_t mse, uint64_t size) {
  return (mse > 0 && size > 0) ? 10. * log10(255. * 255. * size / mse) : 99;
}

//------------------------------------------------------------------------------
//  StatLoop(): only collect statistics (number of skips, token usage, ...).
//  This is used for deciding optimal probabilities. It also modifies the
//  quantizer value if some target (size, PSNR) was specified.

static void SetLoopParams(VP8Encoder* const enc, float q) {
  // Make sure the quality parameter is inside valid bounds
  q = Clamp(q, 0.f, 100.f);

  VP8SetSegmentParams(enc, q);      // setup segment quantizations and filters
  SetSegmentProbas(enc);            // compute segment probabilities

  ResetStats(enc);
  ResetSSE(enc);
}

static uint64_t OneStatPass(VP8Encoder* const enc, VP8RDLevel rd_opt,
                            int nb_mbs, int percent_delta,
                            PassStats* const s) {
  VP8EncIterator it;
  uint64_t size = 0;
  uint64_t size_p0 = 0;
  uint64_t distortion = 0;
  const uint64_t pixel_count = nb_mbs * 384;

  VP8IteratorInit(enc, &it);
  SetLoopParams(enc, s->q);
  do {
    VP8ModeScore info;
    VP8IteratorImport(&it, NULL);
    if (VP8Decimate(&it, &info, rd_opt)) {
      // Just record the number of skips and act like skip_proba is not used.
      ++enc->proba_.nb_skip_;
    }
    RecordResiduals(&it, &info);
    size += info.R + info.H;
    size_p0 += info.H;
    distortion += info.D;
    if (percent_delta && !VP8IteratorProgress(&it, percent_delta)) {
      return 0;
    }
    VP8IteratorSaveBoundary(&it);
  } while (VP8IteratorNext(&it) && --nb_mbs > 0);

  size_p0 += enc->segment_hdr_.size_;
  if (s->do_size_search) {
    size += FinalizeSkipProba(enc);
    size += FinalizeTokenProbas(&enc->proba_);
    size = ((size + size_p0 + 1024) >> 11) + HEADER_SIZE_ESTIMATE;
    s->value = (double)size;
  } else {
    s->value = GetPSNR(distortion, pixel_count);
  }
  return size_p0;
}

static int StatLoop(VP8Encoder* const enc) {
  const int method = enc->method_;
  const int do_search = enc->do_search_;
  const int fast_probe = ((method == 0 || method == 3) && !do_search);
  int num_pass_left = enc->config_->pass;
  const int task_percent = 20;
  const int percent_per_pass =
      (task_percent + num_pass_left / 2) / num_pass_left;
  const int final_percent = enc->percent_ + task_percent;
  const VP8RDLevel rd_opt =
      (method >= 3 || do_search) ? RD_OPT_BASIC : RD_OPT_NONE;
  int nb_mbs = enc->mb_w_ * enc->mb_h_;
  PassStats stats;

  InitPassStats(enc, &stats);
  ResetTokenStats(enc);

  // Fast mode: quick analysis pass over few mbs. Better than nothing.
  if (fast_probe) {
    if (method == 3) {  // we need more stats for method 3 to be reliable.
      nb_mbs = (nb_mbs > 200) ? nb_mbs >> 1 : 100;
    } else {
      nb_mbs = (nb_mbs > 200) ? nb_mbs >> 2 : 50;
    }
  }

  while (num_pass_left-- > 0) {
    const int is_last_pass = (fabs(stats.dq) <= DQ_LIMIT) ||
                             (num_pass_left == 0) ||
                             (enc->max_i4_header_bits_ == 0);
    const uint64_t size_p0 =
        OneStatPass(enc, rd_opt, nb_mbs, percent_per_pass, &stats);
    if (size_p0 == 0) return 0;
#if (DEBUG_SEARCH > 0)
    printf("#%d value:%.1lf -> %.1lf   q:%.2f -> %.2f\n",
           num_pass_left, stats.last_value, stats.value, stats.last_q, stats.q);
#endif
    if (enc->max_i4_header_bits_ > 0 && size_p0 > PARTITION0_SIZE_LIMIT) {
      ++num_pass_left;
      enc->max_i4_header_bits_ >>= 1;  // strengthen header bit limitation...
      continue;                        // ...and start over
    }
    if (is_last_pass) {
      break;
    }
    // If no target size: just do several pass without changing 'q'
    if (do_search) {
      ComputeNextQ(&stats);
      if (fabs(stats.dq) <= DQ_LIMIT) break;
    }
  }
  if (!do_search || !stats.do_size_search) {
    // Need to finalize probas now, since it wasn't done during the search.
    FinalizeSkipProba(enc);
    FinalizeTokenProbas(&enc->proba_);
  }
  VP8CalculateLevelCosts(&enc->proba_);  // finalize costs
  return WebPReportProgress(enc->pic_, final_percent, &enc->percent_);
}

//------------------------------------------------------------------------------
// Main loops
//

static const uint8_t kAverageBytesPerMB[8] = { 50, 24, 16, 9, 7, 5, 3, 2 };

static int PreLoopInitialize(VP8Encoder* const enc) {
  int p;
  int ok = 1;
  const int average_bytes_per_MB = kAverageBytesPerMB[enc->base_quant_ >> 4];
  const int bytes_per_parts =
      enc->mb_w_ * enc->mb_h_ * average_bytes_per_MB / enc->num_parts_;
  // Initialize the bit-writers
  for (p = 0; ok && p < enc->num_parts_; ++p) {
    ok = VP8BitWriterInit(enc->parts_ + p, bytes_per_parts);
  }
  if (!ok) {
    VP8EncFreeBitWriters(enc);  // malloc error occurred
    WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
  }
  return ok;
}

static int PostLoopFinalize(VP8EncIterator* const it, int ok) {
  VP8Encoder* const enc = it->enc_;
  if (ok) {      // Finalize the partitions, check for extra errors.
    int p;
    for (p = 0; p < enc->num_parts_; ++p) {
      VP8BitWriterFinish(enc->parts_ + p);
      ok &= !enc->parts_[p].error_;
    }
  }

  if (ok) {      // All good. Finish up.
#if !defined(WEBP_DISABLE_STATS)
    if (enc->pic_->stats != NULL) {  // finalize byte counters...
      int i, s;
      for (i = 0; i <= 2; ++i) {
        for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
          enc->residual_bytes_[i][s] = (int)((it->bit_count_[s][i] + 7) >> 3);
        }
      }
    }
#endif
    VP8AdjustFilterStrength(it);     // ...and store filter stats.
  } else {
    // Something bad happened -> need to do some memory cleanup.
    VP8EncFreeBitWriters(enc);
  }
  return ok;
}

//------------------------------------------------------------------------------
//  VP8EncLoop(): does the final bitstream coding.

static void ResetAfterSkip(VP8EncIterator* const it) {
  if (it->mb_->type_ == 1) {
    *it->nz_ = 0;  // reset all predictors
    it->left_nz_[8] = 0;
  } else {
    *it->nz_ &= (1 << 24);  // preserve the dc_nz bit
  }
}

int VP8EncLoop(VP8Encoder* const enc) {
  VP8EncIterator it;
  int ok = PreLoopInitialize(enc);
  if (!ok) return 0;

  StatLoop(enc);  // stats-collection loop

  VP8IteratorInit(enc, &it);
  VP8InitFilter(&it);
  do {
    VP8ModeScore info;
    const int dont_use_skip = !enc->proba_.use_skip_proba_;
    const VP8RDLevel rd_opt = enc->rd_opt_level_;

    VP8IteratorImport(&it, NULL);
    // Warning! order is important: first call VP8Decimate() and
    // *then* decide how to code the skip decision if there's one.
    if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) {
      CodeResiduals(it.bw_, &it, &info);
    } else {   // reset predictors after a skip
      ResetAfterSkip(&it);
    }
    StoreSideInfo(&it);
    VP8StoreFilterStats(&it);
    VP8IteratorExport(&it);
    ok = VP8IteratorProgress(&it, 20);
    VP8IteratorSaveBoundary(&it);
  } while (ok && VP8IteratorNext(&it));

  return PostLoopFinalize(&it, ok);
}

//------------------------------------------------------------------------------
// Single pass using Token Buffer.

#if !defined(DISABLE_TOKEN_BUFFER)

#define MIN_COUNT 96  // minimum number of macroblocks before updating stats

int VP8EncTokenLoop(VP8Encoder* const enc) {
  // Roughly refresh the proba eight times per pass
  int max_count = (enc->mb_w_ * enc->mb_h_) >> 3;
  int num_pass_left = enc->config_->pass;
  const int do_search = enc->do_search_;
  VP8EncIterator it;
  VP8EncProba* const proba = &enc->proba_;
  const VP8RDLevel rd_opt = enc->rd_opt_level_;
  const uint64_t pixel_count = enc->mb_w_ * enc->mb_h_ * 384;
  PassStats stats;
  int ok;

  InitPassStats(enc, &stats);
  ok = PreLoopInitialize(enc);
  if (!ok) return 0;

  if (max_count < MIN_COUNT) max_count = MIN_COUNT;

  assert(enc->num_parts_ == 1);
  assert(enc->use_tokens_);
  assert(proba->use_skip_proba_ == 0);
  assert(rd_opt >= RD_OPT_BASIC);   // otherwise, token-buffer won't be useful
  assert(num_pass_left > 0);

  while (ok && num_pass_left-- > 0) {
    const int is_last_pass = (fabs(stats.dq) <= DQ_LIMIT) ||
                             (num_pass_left == 0) ||
                             (enc->max_i4_header_bits_ == 0);
    uint64_t size_p0 = 0;
    uint64_t distortion = 0;
    int cnt = max_count;
    VP8IteratorInit(enc, &it);
    SetLoopParams(enc, stats.q);
    if (is_last_pass) {
      ResetTokenStats(enc);
      VP8InitFilter(&it);  // don't collect stats until last pass (too costly)
    }
    VP8TBufferClear(&enc->tokens_);
    do {
      VP8ModeScore info;
      VP8IteratorImport(&it, NULL);
      if (--cnt < 0) {
        FinalizeTokenProbas(proba);
        VP8CalculateLevelCosts(proba);  // refresh cost tables for rd-opt
        cnt = max_count;
      }
      VP8Decimate(&it, &info, rd_opt);
      ok = RecordTokens(&it, &info, &enc->tokens_);
      if (!ok) {
        WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
        break;
      }
      size_p0 += info.H;
      distortion += info.D;
      if (is_last_pass) {
        StoreSideInfo(&it);
        VP8StoreFilterStats(&it);
        VP8IteratorExport(&it);
        ok = VP8IteratorProgress(&it, 20);
      }
      VP8IteratorSaveBoundary(&it);
    } while (ok && VP8IteratorNext(&it));
    if (!ok) break;

    size_p0 += enc->segment_hdr_.size_;
    if (stats.do_size_search) {
      uint64_t size = FinalizeTokenProbas(&enc->proba_);
      size += VP8EstimateTokenSize(&enc->tokens_,
                                   (const uint8_t*)proba->coeffs_);
      size = (size + size_p0 + 1024) >> 11;  // -> size in bytes
      size += HEADER_SIZE_ESTIMATE;
      stats.value = (double)size;
    } else {  // compute and store PSNR
      stats.value = GetPSNR(distortion, pixel_count);
    }

#if (DEBUG_SEARCH > 0)
    printf("#%2d metric:%.1lf -> %.1lf   last_q=%.2lf q=%.2lf dq=%.2lf "
           " range:[%.1f, %.1f]\n",
           num_pass_left, stats.last_value, stats.value,
           stats.last_q, stats.q, stats.dq, stats.qmin, stats.qmax);
#endif
    if (enc->max_i4_header_bits_ > 0 && size_p0 > PARTITION0_SIZE_LIMIT) {
      ++num_pass_left;
      enc->max_i4_header_bits_ >>= 1;  // strengthen header bit limitation...
      if (is_last_pass) {
        ResetSideInfo(&it);
      }
      continue;                        // ...and start over
    }
    if (is_last_pass) {
      break;   // done
    }
    if (do_search) {
      ComputeNextQ(&stats);  // Adjust q
    }
  }
  if (ok) {
    if (!stats.do_size_search) {
      FinalizeTokenProbas(&enc->proba_);
    }
    ok = VP8EmitTokens(&enc->tokens_, enc->parts_ + 0,
                       (const uint8_t*)proba->coeffs_, 1);
  }
  ok = ok && WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
  return PostLoopFinalize(&it, ok);
}

#else

int VP8EncTokenLoop(VP8Encoder* const enc) {
  (void)enc;
  return 0;   // we shouldn't be here.
}

#endif    // DISABLE_TOKEN_BUFFER

//------------------------------------------------------------------------------