1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
|
package toml
import (
"encoding"
"errors"
"fmt"
"io"
"io/ioutil"
"math"
"reflect"
"strings"
"sync/atomic"
"time"
"github.com/pelletier/go-toml/v2/internal/danger"
"github.com/pelletier/go-toml/v2/internal/tracker"
"github.com/pelletier/go-toml/v2/unstable"
)
// Unmarshal deserializes a TOML document into a Go value.
//
// It is a shortcut for Decoder.Decode() with the default options.
func Unmarshal(data []byte, v interface{}) error {
p := unstable.Parser{}
p.Reset(data)
d := decoder{p: &p}
return d.FromParser(v)
}
// Decoder reads and decode a TOML document from an input stream.
type Decoder struct {
// input
r io.Reader
// global settings
strict bool
}
// NewDecoder creates a new Decoder that will read from r.
func NewDecoder(r io.Reader) *Decoder {
return &Decoder{r: r}
}
// DisallowUnknownFields causes the Decoder to return an error when the
// destination is a struct and the input contains a key that does not match a
// non-ignored field.
//
// In that case, the Decoder returns a StrictMissingError that can be used to
// retrieve the individual errors as well as generate a human readable
// description of the missing fields.
func (d *Decoder) DisallowUnknownFields() *Decoder {
d.strict = true
return d
}
// Decode the whole content of r into v.
//
// By default, values in the document that don't exist in the target Go value
// are ignored. See Decoder.DisallowUnknownFields() to change this behavior.
//
// When a TOML local date, time, or date-time is decoded into a time.Time, its
// value is represented in time.Local timezone. Otherwise the appropriate Local*
// structure is used. For time values, precision up to the nanosecond is
// supported by truncating extra digits.
//
// Empty tables decoded in an interface{} create an empty initialized
// map[string]interface{}.
//
// Types implementing the encoding.TextUnmarshaler interface are decoded from a
// TOML string.
//
// When decoding a number, go-toml will return an error if the number is out of
// bounds for the target type (which includes negative numbers when decoding
// into an unsigned int).
//
// If an error occurs while decoding the content of the document, this function
// returns a toml.DecodeError, providing context about the issue. When using
// strict mode and a field is missing, a `toml.StrictMissingError` is
// returned. In any other case, this function returns a standard Go error.
//
// # Type mapping
//
// List of supported TOML types and their associated accepted Go types:
//
// String -> string
// Integer -> uint*, int*, depending on size
// Float -> float*, depending on size
// Boolean -> bool
// Offset Date-Time -> time.Time
// Local Date-time -> LocalDateTime, time.Time
// Local Date -> LocalDate, time.Time
// Local Time -> LocalTime, time.Time
// Array -> slice and array, depending on elements types
// Table -> map and struct
// Inline Table -> same as Table
// Array of Tables -> same as Array and Table
func (d *Decoder) Decode(v interface{}) error {
b, err := ioutil.ReadAll(d.r)
if err != nil {
return fmt.Errorf("toml: %w", err)
}
p := unstable.Parser{}
p.Reset(b)
dec := decoder{
p: &p,
strict: strict{
Enabled: d.strict,
},
}
return dec.FromParser(v)
}
type decoder struct {
// Which parser instance in use for this decoding session.
p *unstable.Parser
// Flag indicating that the current expression is stashed.
// If set to true, calling nextExpr will not actually pull a new expression
// but turn off the flag instead.
stashedExpr bool
// Skip expressions until a table is found. This is set to true when a
// table could not be created (missing field in map), so all KV expressions
// need to be skipped.
skipUntilTable bool
// Tracks position in Go arrays.
// This is used when decoding [[array tables]] into Go arrays. Given array
// tables are separate TOML expression, we need to keep track of where we
// are at in the Go array, as we can't just introspect its size.
arrayIndexes map[reflect.Value]int
// Tracks keys that have been seen, with which type.
seen tracker.SeenTracker
// Strict mode
strict strict
// Current context for the error.
errorContext *errorContext
}
type errorContext struct {
Struct reflect.Type
Field []int
}
func (d *decoder) typeMismatchError(toml string, target reflect.Type) error {
if d.errorContext != nil && d.errorContext.Struct != nil {
ctx := d.errorContext
f := ctx.Struct.FieldByIndex(ctx.Field)
return fmt.Errorf("toml: cannot decode TOML %s into struct field %s.%s of type %s", toml, ctx.Struct, f.Name, f.Type)
}
return fmt.Errorf("toml: cannot decode TOML %s into a Go value of type %s", toml, target)
}
func (d *decoder) expr() *unstable.Node {
return d.p.Expression()
}
func (d *decoder) nextExpr() bool {
if d.stashedExpr {
d.stashedExpr = false
return true
}
return d.p.NextExpression()
}
func (d *decoder) stashExpr() {
d.stashedExpr = true
}
func (d *decoder) arrayIndex(shouldAppend bool, v reflect.Value) int {
if d.arrayIndexes == nil {
d.arrayIndexes = make(map[reflect.Value]int, 1)
}
idx, ok := d.arrayIndexes[v]
if !ok {
d.arrayIndexes[v] = 0
} else if shouldAppend {
idx++
d.arrayIndexes[v] = idx
}
return idx
}
func (d *decoder) FromParser(v interface{}) error {
r := reflect.ValueOf(v)
if r.Kind() != reflect.Ptr {
return fmt.Errorf("toml: decoding can only be performed into a pointer, not %s", r.Kind())
}
if r.IsNil() {
return fmt.Errorf("toml: decoding pointer target cannot be nil")
}
r = r.Elem()
if r.Kind() == reflect.Interface && r.IsNil() {
newMap := map[string]interface{}{}
r.Set(reflect.ValueOf(newMap))
}
err := d.fromParser(r)
if err == nil {
return d.strict.Error(d.p.Data())
}
var e *unstable.ParserError
if errors.As(err, &e) {
return wrapDecodeError(d.p.Data(), e)
}
return err
}
func (d *decoder) fromParser(root reflect.Value) error {
for d.nextExpr() {
err := d.handleRootExpression(d.expr(), root)
if err != nil {
return err
}
}
return d.p.Error()
}
/*
Rules for the unmarshal code:
- The stack is used to keep track of which values need to be set where.
- handle* functions <=> switch on a given unstable.Kind.
- unmarshalX* functions need to unmarshal a node of kind X.
- An "object" is either a struct or a map.
*/
func (d *decoder) handleRootExpression(expr *unstable.Node, v reflect.Value) error {
var x reflect.Value
var err error
if !(d.skipUntilTable && expr.Kind == unstable.KeyValue) {
err = d.seen.CheckExpression(expr)
if err != nil {
return err
}
}
switch expr.Kind {
case unstable.KeyValue:
if d.skipUntilTable {
return nil
}
x, err = d.handleKeyValue(expr, v)
case unstable.Table:
d.skipUntilTable = false
d.strict.EnterTable(expr)
x, err = d.handleTable(expr.Key(), v)
case unstable.ArrayTable:
d.skipUntilTable = false
d.strict.EnterArrayTable(expr)
x, err = d.handleArrayTable(expr.Key(), v)
default:
panic(fmt.Errorf("parser should not permit expression of kind %s at document root", expr.Kind))
}
if d.skipUntilTable {
if expr.Kind == unstable.Table || expr.Kind == unstable.ArrayTable {
d.strict.MissingTable(expr)
}
} else if err == nil && x.IsValid() {
v.Set(x)
}
return err
}
func (d *decoder) handleArrayTable(key unstable.Iterator, v reflect.Value) (reflect.Value, error) {
if key.Next() {
return d.handleArrayTablePart(key, v)
}
return d.handleKeyValues(v)
}
func (d *decoder) handleArrayTableCollectionLast(key unstable.Iterator, v reflect.Value) (reflect.Value, error) {
switch v.Kind() {
case reflect.Interface:
elem := v.Elem()
if !elem.IsValid() {
elem = reflect.New(sliceInterfaceType).Elem()
elem.Set(reflect.MakeSlice(sliceInterfaceType, 0, 16))
} else if elem.Kind() == reflect.Slice {
if elem.Type() != sliceInterfaceType {
elem = reflect.New(sliceInterfaceType).Elem()
elem.Set(reflect.MakeSlice(sliceInterfaceType, 0, 16))
} else if !elem.CanSet() {
nelem := reflect.New(sliceInterfaceType).Elem()
nelem.Set(reflect.MakeSlice(sliceInterfaceType, elem.Len(), elem.Cap()))
reflect.Copy(nelem, elem)
elem = nelem
}
}
return d.handleArrayTableCollectionLast(key, elem)
case reflect.Ptr:
elem := v.Elem()
if !elem.IsValid() {
ptr := reflect.New(v.Type().Elem())
v.Set(ptr)
elem = ptr.Elem()
}
elem, err := d.handleArrayTableCollectionLast(key, elem)
if err != nil {
return reflect.Value{}, err
}
v.Elem().Set(elem)
return v, nil
case reflect.Slice:
elemType := v.Type().Elem()
var elem reflect.Value
if elemType.Kind() == reflect.Interface {
elem = makeMapStringInterface()
} else {
elem = reflect.New(elemType).Elem()
}
elem2, err := d.handleArrayTable(key, elem)
if err != nil {
return reflect.Value{}, err
}
if elem2.IsValid() {
elem = elem2
}
return reflect.Append(v, elem), nil
case reflect.Array:
idx := d.arrayIndex(true, v)
if idx >= v.Len() {
return v, fmt.Errorf("%s at position %d", d.typeMismatchError("array table", v.Type()), idx)
}
elem := v.Index(idx)
_, err := d.handleArrayTable(key, elem)
return v, err
default:
return reflect.Value{}, d.typeMismatchError("array table", v.Type())
}
}
// When parsing an array table expression, each part of the key needs to be
// evaluated like a normal key, but if it returns a collection, it also needs to
// point to the last element of the collection. Unless it is the last part of
// the key, then it needs to create a new element at the end.
func (d *decoder) handleArrayTableCollection(key unstable.Iterator, v reflect.Value) (reflect.Value, error) {
if key.IsLast() {
return d.handleArrayTableCollectionLast(key, v)
}
switch v.Kind() {
case reflect.Ptr:
elem := v.Elem()
if !elem.IsValid() {
ptr := reflect.New(v.Type().Elem())
v.Set(ptr)
elem = ptr.Elem()
}
elem, err := d.handleArrayTableCollection(key, elem)
if err != nil {
return reflect.Value{}, err
}
if elem.IsValid() {
v.Elem().Set(elem)
}
return v, nil
case reflect.Slice:
elem := v.Index(v.Len() - 1)
x, err := d.handleArrayTable(key, elem)
if err != nil || d.skipUntilTable {
return reflect.Value{}, err
}
if x.IsValid() {
elem.Set(x)
}
return v, err
case reflect.Array:
idx := d.arrayIndex(false, v)
if idx >= v.Len() {
return v, fmt.Errorf("%s at position %d", d.typeMismatchError("array table", v.Type()), idx)
}
elem := v.Index(idx)
_, err := d.handleArrayTable(key, elem)
return v, err
}
return d.handleArrayTable(key, v)
}
func (d *decoder) handleKeyPart(key unstable.Iterator, v reflect.Value, nextFn handlerFn, makeFn valueMakerFn) (reflect.Value, error) {
var rv reflect.Value
// First, dispatch over v to make sure it is a valid object.
// There is no guarantee over what it could be.
switch v.Kind() {
case reflect.Ptr:
elem := v.Elem()
if !elem.IsValid() {
v.Set(reflect.New(v.Type().Elem()))
}
elem = v.Elem()
return d.handleKeyPart(key, elem, nextFn, makeFn)
case reflect.Map:
vt := v.Type()
// Create the key for the map element. Convert to key type.
mk, err := d.keyFromData(vt.Key(), key.Node().Data)
if err != nil {
return reflect.Value{}, err
}
// If the map does not exist, create it.
if v.IsNil() {
vt := v.Type()
v = reflect.MakeMap(vt)
rv = v
}
mv := v.MapIndex(mk)
set := false
if !mv.IsValid() {
// If there is no value in the map, create a new one according to
// the map type. If the element type is interface, create either a
// map[string]interface{} or a []interface{} depending on whether
// this is the last part of the array table key.
t := vt.Elem()
if t.Kind() == reflect.Interface {
mv = makeFn()
} else {
mv = reflect.New(t).Elem()
}
set = true
} else if mv.Kind() == reflect.Interface {
mv = mv.Elem()
if !mv.IsValid() {
mv = makeFn()
}
set = true
} else if !mv.CanAddr() {
vt := v.Type()
t := vt.Elem()
oldmv := mv
mv = reflect.New(t).Elem()
mv.Set(oldmv)
set = true
}
x, err := nextFn(key, mv)
if err != nil {
return reflect.Value{}, err
}
if x.IsValid() {
mv = x
set = true
}
if set {
v.SetMapIndex(mk, mv)
}
case reflect.Struct:
path, found := structFieldPath(v, string(key.Node().Data))
if !found {
d.skipUntilTable = true
return reflect.Value{}, nil
}
if d.errorContext == nil {
d.errorContext = new(errorContext)
}
t := v.Type()
d.errorContext.Struct = t
d.errorContext.Field = path
f := fieldByIndex(v, path)
x, err := nextFn(key, f)
if err != nil || d.skipUntilTable {
return reflect.Value{}, err
}
if x.IsValid() {
f.Set(x)
}
d.errorContext.Field = nil
d.errorContext.Struct = nil
case reflect.Interface:
if v.Elem().IsValid() {
v = v.Elem()
} else {
v = makeMapStringInterface()
}
x, err := d.handleKeyPart(key, v, nextFn, makeFn)
if err != nil {
return reflect.Value{}, err
}
if x.IsValid() {
v = x
}
rv = v
default:
panic(fmt.Errorf("unhandled part: %s", v.Kind()))
}
return rv, nil
}
// HandleArrayTablePart navigates the Go structure v using the key v. It is
// only used for the prefix (non-last) parts of an array-table. When
// encountering a collection, it should go to the last element.
func (d *decoder) handleArrayTablePart(key unstable.Iterator, v reflect.Value) (reflect.Value, error) {
var makeFn valueMakerFn
if key.IsLast() {
makeFn = makeSliceInterface
} else {
makeFn = makeMapStringInterface
}
return d.handleKeyPart(key, v, d.handleArrayTableCollection, makeFn)
}
// HandleTable returns a reference when it has checked the next expression but
// cannot handle it.
func (d *decoder) handleTable(key unstable.Iterator, v reflect.Value) (reflect.Value, error) {
if v.Kind() == reflect.Slice {
if v.Len() == 0 {
return reflect.Value{}, unstable.NewParserError(key.Node().Data, "cannot store a table in a slice")
}
elem := v.Index(v.Len() - 1)
x, err := d.handleTable(key, elem)
if err != nil {
return reflect.Value{}, err
}
if x.IsValid() {
elem.Set(x)
}
return reflect.Value{}, nil
}
if key.Next() {
// Still scoping the key
return d.handleTablePart(key, v)
}
// Done scoping the key.
// Now handle all the key-value expressions in this table.
return d.handleKeyValues(v)
}
// Handle root expressions until the end of the document or the next
// non-key-value.
func (d *decoder) handleKeyValues(v reflect.Value) (reflect.Value, error) {
var rv reflect.Value
for d.nextExpr() {
expr := d.expr()
if expr.Kind != unstable.KeyValue {
// Stash the expression so that fromParser can just loop and use
// the right handler.
// We could just recurse ourselves here, but at least this gives a
// chance to pop the stack a bit.
d.stashExpr()
break
}
err := d.seen.CheckExpression(expr)
if err != nil {
return reflect.Value{}, err
}
x, err := d.handleKeyValue(expr, v)
if err != nil {
return reflect.Value{}, err
}
if x.IsValid() {
v = x
rv = x
}
}
return rv, nil
}
type (
handlerFn func(key unstable.Iterator, v reflect.Value) (reflect.Value, error)
valueMakerFn func() reflect.Value
)
func makeMapStringInterface() reflect.Value {
return reflect.MakeMap(mapStringInterfaceType)
}
func makeSliceInterface() reflect.Value {
return reflect.MakeSlice(sliceInterfaceType, 0, 16)
}
func (d *decoder) handleTablePart(key unstable.Iterator, v reflect.Value) (reflect.Value, error) {
return d.handleKeyPart(key, v, d.handleTable, makeMapStringInterface)
}
func (d *decoder) tryTextUnmarshaler(node *unstable.Node, v reflect.Value) (bool, error) {
// Special case for time, because we allow to unmarshal to it from
// different kind of AST nodes.
if v.Type() == timeType {
return false, nil
}
if v.CanAddr() && v.Addr().Type().Implements(textUnmarshalerType) {
err := v.Addr().Interface().(encoding.TextUnmarshaler).UnmarshalText(node.Data)
if err != nil {
return false, unstable.NewParserError(d.p.Raw(node.Raw), "%w", err)
}
return true, nil
}
return false, nil
}
func (d *decoder) handleValue(value *unstable.Node, v reflect.Value) error {
for v.Kind() == reflect.Ptr {
v = initAndDereferencePointer(v)
}
ok, err := d.tryTextUnmarshaler(value, v)
if ok || err != nil {
return err
}
switch value.Kind {
case unstable.String:
return d.unmarshalString(value, v)
case unstable.Integer:
return d.unmarshalInteger(value, v)
case unstable.Float:
return d.unmarshalFloat(value, v)
case unstable.Bool:
return d.unmarshalBool(value, v)
case unstable.DateTime:
return d.unmarshalDateTime(value, v)
case unstable.LocalDate:
return d.unmarshalLocalDate(value, v)
case unstable.LocalTime:
return d.unmarshalLocalTime(value, v)
case unstable.LocalDateTime:
return d.unmarshalLocalDateTime(value, v)
case unstable.InlineTable:
return d.unmarshalInlineTable(value, v)
case unstable.Array:
return d.unmarshalArray(value, v)
default:
panic(fmt.Errorf("handleValue not implemented for %s", value.Kind))
}
}
func (d *decoder) unmarshalArray(array *unstable.Node, v reflect.Value) error {
switch v.Kind() {
case reflect.Slice:
if v.IsNil() {
v.Set(reflect.MakeSlice(v.Type(), 0, 16))
} else {
v.SetLen(0)
}
case reflect.Array:
// arrays are always initialized
case reflect.Interface:
elem := v.Elem()
if !elem.IsValid() {
elem = reflect.New(sliceInterfaceType).Elem()
elem.Set(reflect.MakeSlice(sliceInterfaceType, 0, 16))
} else if elem.Kind() == reflect.Slice {
if elem.Type() != sliceInterfaceType {
elem = reflect.New(sliceInterfaceType).Elem()
elem.Set(reflect.MakeSlice(sliceInterfaceType, 0, 16))
} else if !elem.CanSet() {
nelem := reflect.New(sliceInterfaceType).Elem()
nelem.Set(reflect.MakeSlice(sliceInterfaceType, elem.Len(), elem.Cap()))
reflect.Copy(nelem, elem)
elem = nelem
}
}
err := d.unmarshalArray(array, elem)
if err != nil {
return err
}
v.Set(elem)
return nil
default:
// TODO: use newDecodeError, but first the parser needs to fill
// array.Data.
return d.typeMismatchError("array", v.Type())
}
elemType := v.Type().Elem()
it := array.Children()
idx := 0
for it.Next() {
n := it.Node()
// TODO: optimize
if v.Kind() == reflect.Slice {
elem := reflect.New(elemType).Elem()
err := d.handleValue(n, elem)
if err != nil {
return err
}
v.Set(reflect.Append(v, elem))
} else { // array
if idx >= v.Len() {
return nil
}
elem := v.Index(idx)
err := d.handleValue(n, elem)
if err != nil {
return err
}
idx++
}
}
return nil
}
func (d *decoder) unmarshalInlineTable(itable *unstable.Node, v reflect.Value) error {
// Make sure v is an initialized object.
switch v.Kind() {
case reflect.Map:
if v.IsNil() {
v.Set(reflect.MakeMap(v.Type()))
}
case reflect.Struct:
// structs are always initialized.
case reflect.Interface:
elem := v.Elem()
if !elem.IsValid() {
elem = makeMapStringInterface()
v.Set(elem)
}
return d.unmarshalInlineTable(itable, elem)
default:
return unstable.NewParserError(d.p.Raw(itable.Raw), "cannot store inline table in Go type %s", v.Kind())
}
it := itable.Children()
for it.Next() {
n := it.Node()
x, err := d.handleKeyValue(n, v)
if err != nil {
return err
}
if x.IsValid() {
v = x
}
}
return nil
}
func (d *decoder) unmarshalDateTime(value *unstable.Node, v reflect.Value) error {
dt, err := parseDateTime(value.Data)
if err != nil {
return err
}
v.Set(reflect.ValueOf(dt))
return nil
}
func (d *decoder) unmarshalLocalDate(value *unstable.Node, v reflect.Value) error {
ld, err := parseLocalDate(value.Data)
if err != nil {
return err
}
if v.Type() == timeType {
cast := ld.AsTime(time.Local)
v.Set(reflect.ValueOf(cast))
return nil
}
v.Set(reflect.ValueOf(ld))
return nil
}
func (d *decoder) unmarshalLocalTime(value *unstable.Node, v reflect.Value) error {
lt, rest, err := parseLocalTime(value.Data)
if err != nil {
return err
}
if len(rest) > 0 {
return unstable.NewParserError(rest, "extra characters at the end of a local time")
}
v.Set(reflect.ValueOf(lt))
return nil
}
func (d *decoder) unmarshalLocalDateTime(value *unstable.Node, v reflect.Value) error {
ldt, rest, err := parseLocalDateTime(value.Data)
if err != nil {
return err
}
if len(rest) > 0 {
return unstable.NewParserError(rest, "extra characters at the end of a local date time")
}
if v.Type() == timeType {
cast := ldt.AsTime(time.Local)
v.Set(reflect.ValueOf(cast))
return nil
}
v.Set(reflect.ValueOf(ldt))
return nil
}
func (d *decoder) unmarshalBool(value *unstable.Node, v reflect.Value) error {
b := value.Data[0] == 't'
switch v.Kind() {
case reflect.Bool:
v.SetBool(b)
case reflect.Interface:
v.Set(reflect.ValueOf(b))
default:
return unstable.NewParserError(value.Data, "cannot assign boolean to a %t", b)
}
return nil
}
func (d *decoder) unmarshalFloat(value *unstable.Node, v reflect.Value) error {
f, err := parseFloat(value.Data)
if err != nil {
return err
}
switch v.Kind() {
case reflect.Float64:
v.SetFloat(f)
case reflect.Float32:
if f > math.MaxFloat32 {
return unstable.NewParserError(value.Data, "number %f does not fit in a float32", f)
}
v.SetFloat(f)
case reflect.Interface:
v.Set(reflect.ValueOf(f))
default:
return unstable.NewParserError(value.Data, "float cannot be assigned to %s", v.Kind())
}
return nil
}
const (
maxInt = int64(^uint(0) >> 1)
minInt = -maxInt - 1
)
// Maximum value of uint for decoding. Currently the decoder parses the integer
// into an int64. As a result, on architectures where uint is 64 bits, the
// effective maximum uint we can decode is the maximum of int64. On
// architectures where uint is 32 bits, the maximum value we can decode is
// lower: the maximum of uint32. I didn't find a way to figure out this value at
// compile time, so it is computed during initialization.
var maxUint int64 = math.MaxInt64
func init() {
m := uint64(^uint(0))
if m < uint64(maxUint) {
maxUint = int64(m)
}
}
func (d *decoder) unmarshalInteger(value *unstable.Node, v reflect.Value) error {
kind := v.Kind()
if kind == reflect.Float32 || kind == reflect.Float64 {
return d.unmarshalFloat(value, v)
}
i, err := parseInteger(value.Data)
if err != nil {
return err
}
var r reflect.Value
switch kind {
case reflect.Int64:
v.SetInt(i)
return nil
case reflect.Int32:
if i < math.MinInt32 || i > math.MaxInt32 {
return fmt.Errorf("toml: number %d does not fit in an int32", i)
}
r = reflect.ValueOf(int32(i))
case reflect.Int16:
if i < math.MinInt16 || i > math.MaxInt16 {
return fmt.Errorf("toml: number %d does not fit in an int16", i)
}
r = reflect.ValueOf(int16(i))
case reflect.Int8:
if i < math.MinInt8 || i > math.MaxInt8 {
return fmt.Errorf("toml: number %d does not fit in an int8", i)
}
r = reflect.ValueOf(int8(i))
case reflect.Int:
if i < minInt || i > maxInt {
return fmt.Errorf("toml: number %d does not fit in an int", i)
}
r = reflect.ValueOf(int(i))
case reflect.Uint64:
if i < 0 {
return fmt.Errorf("toml: negative number %d does not fit in an uint64", i)
}
r = reflect.ValueOf(uint64(i))
case reflect.Uint32:
if i < 0 || i > math.MaxUint32 {
return fmt.Errorf("toml: negative number %d does not fit in an uint32", i)
}
r = reflect.ValueOf(uint32(i))
case reflect.Uint16:
if i < 0 || i > math.MaxUint16 {
return fmt.Errorf("toml: negative number %d does not fit in an uint16", i)
}
r = reflect.ValueOf(uint16(i))
case reflect.Uint8:
if i < 0 || i > math.MaxUint8 {
return fmt.Errorf("toml: negative number %d does not fit in an uint8", i)
}
r = reflect.ValueOf(uint8(i))
case reflect.Uint:
if i < 0 || i > maxUint {
return fmt.Errorf("toml: negative number %d does not fit in an uint", i)
}
r = reflect.ValueOf(uint(i))
case reflect.Interface:
r = reflect.ValueOf(i)
default:
return d.typeMismatchError("integer", v.Type())
}
if !r.Type().AssignableTo(v.Type()) {
r = r.Convert(v.Type())
}
v.Set(r)
return nil
}
func (d *decoder) unmarshalString(value *unstable.Node, v reflect.Value) error {
switch v.Kind() {
case reflect.String:
v.SetString(string(value.Data))
case reflect.Interface:
v.Set(reflect.ValueOf(string(value.Data)))
default:
return unstable.NewParserError(d.p.Raw(value.Raw), "cannot store TOML string into a Go %s", v.Kind())
}
return nil
}
func (d *decoder) handleKeyValue(expr *unstable.Node, v reflect.Value) (reflect.Value, error) {
d.strict.EnterKeyValue(expr)
v, err := d.handleKeyValueInner(expr.Key(), expr.Value(), v)
if d.skipUntilTable {
d.strict.MissingField(expr)
d.skipUntilTable = false
}
d.strict.ExitKeyValue(expr)
return v, err
}
func (d *decoder) handleKeyValueInner(key unstable.Iterator, value *unstable.Node, v reflect.Value) (reflect.Value, error) {
if key.Next() {
// Still scoping the key
return d.handleKeyValuePart(key, value, v)
}
// Done scoping the key.
// v is whatever Go value we need to fill.
return reflect.Value{}, d.handleValue(value, v)
}
func (d *decoder) keyFromData(keyType reflect.Type, data []byte) (reflect.Value, error) {
switch {
case stringType.AssignableTo(keyType):
return reflect.ValueOf(string(data)), nil
case stringType.ConvertibleTo(keyType):
return reflect.ValueOf(string(data)).Convert(keyType), nil
case keyType.Implements(textUnmarshalerType):
mk := reflect.New(keyType.Elem())
if err := mk.Interface().(encoding.TextUnmarshaler).UnmarshalText(data); err != nil {
return reflect.Value{}, fmt.Errorf("toml: error unmarshalling key type %s from text: %w", stringType, err)
}
return mk, nil
case reflect.PtrTo(keyType).Implements(textUnmarshalerType):
mk := reflect.New(keyType)
if err := mk.Interface().(encoding.TextUnmarshaler).UnmarshalText(data); err != nil {
return reflect.Value{}, fmt.Errorf("toml: error unmarshalling key type %s from text: %w", stringType, err)
}
return mk.Elem(), nil
}
return reflect.Value{}, fmt.Errorf("toml: cannot convert map key of type %s to expected type %s", stringType, keyType)
}
func (d *decoder) handleKeyValuePart(key unstable.Iterator, value *unstable.Node, v reflect.Value) (reflect.Value, error) {
// contains the replacement for v
var rv reflect.Value
// First, dispatch over v to make sure it is a valid object.
// There is no guarantee over what it could be.
switch v.Kind() {
case reflect.Map:
vt := v.Type()
mk, err := d.keyFromData(vt.Key(), key.Node().Data)
if err != nil {
return reflect.Value{}, err
}
// If the map does not exist, create it.
if v.IsNil() {
v = reflect.MakeMap(vt)
rv = v
}
mv := v.MapIndex(mk)
set := false
if !mv.IsValid() || key.IsLast() {
set = true
mv = reflect.New(v.Type().Elem()).Elem()
}
nv, err := d.handleKeyValueInner(key, value, mv)
if err != nil {
return reflect.Value{}, err
}
if nv.IsValid() {
mv = nv
set = true
}
if set {
v.SetMapIndex(mk, mv)
}
case reflect.Struct:
path, found := structFieldPath(v, string(key.Node().Data))
if !found {
d.skipUntilTable = true
break
}
if d.errorContext == nil {
d.errorContext = new(errorContext)
}
t := v.Type()
d.errorContext.Struct = t
d.errorContext.Field = path
f := fieldByIndex(v, path)
if !f.CanSet() {
// If the field is not settable, need to take a slower path and make a copy of
// the struct itself to a new location.
nvp := reflect.New(v.Type())
nvp.Elem().Set(v)
v = nvp.Elem()
_, err := d.handleKeyValuePart(key, value, v)
if err != nil {
return reflect.Value{}, err
}
return nvp.Elem(), nil
}
x, err := d.handleKeyValueInner(key, value, f)
if err != nil {
return reflect.Value{}, err
}
if x.IsValid() {
f.Set(x)
}
d.errorContext.Struct = nil
d.errorContext.Field = nil
case reflect.Interface:
v = v.Elem()
// Following encoding/json: decoding an object into an
// interface{}, it needs to always hold a
// map[string]interface{}. This is for the types to be
// consistent whether a previous value was set or not.
if !v.IsValid() || v.Type() != mapStringInterfaceType {
v = makeMapStringInterface()
}
x, err := d.handleKeyValuePart(key, value, v)
if err != nil {
return reflect.Value{}, err
}
if x.IsValid() {
v = x
}
rv = v
case reflect.Ptr:
elem := v.Elem()
if !elem.IsValid() {
ptr := reflect.New(v.Type().Elem())
v.Set(ptr)
rv = v
elem = ptr.Elem()
}
elem2, err := d.handleKeyValuePart(key, value, elem)
if err != nil {
return reflect.Value{}, err
}
if elem2.IsValid() {
elem = elem2
}
v.Elem().Set(elem)
default:
return reflect.Value{}, fmt.Errorf("unhandled kv part: %s", v.Kind())
}
return rv, nil
}
func initAndDereferencePointer(v reflect.Value) reflect.Value {
var elem reflect.Value
if v.IsNil() {
ptr := reflect.New(v.Type().Elem())
v.Set(ptr)
}
elem = v.Elem()
return elem
}
// Same as reflect.Value.FieldByIndex, but creates pointers if needed.
func fieldByIndex(v reflect.Value, path []int) reflect.Value {
for i, x := range path {
v = v.Field(x)
if i < len(path)-1 && v.Kind() == reflect.Ptr {
if v.IsNil() {
v.Set(reflect.New(v.Type().Elem()))
}
v = v.Elem()
}
}
return v
}
type fieldPathsMap = map[string][]int
var globalFieldPathsCache atomic.Value // map[danger.TypeID]fieldPathsMap
func structFieldPath(v reflect.Value, name string) ([]int, bool) {
t := v.Type()
cache, _ := globalFieldPathsCache.Load().(map[danger.TypeID]fieldPathsMap)
fieldPaths, ok := cache[danger.MakeTypeID(t)]
if !ok {
fieldPaths = map[string][]int{}
forEachField(t, nil, func(name string, path []int) {
fieldPaths[name] = path
// extra copy for the case-insensitive match
fieldPaths[strings.ToLower(name)] = path
})
newCache := make(map[danger.TypeID]fieldPathsMap, len(cache)+1)
newCache[danger.MakeTypeID(t)] = fieldPaths
for k, v := range cache {
newCache[k] = v
}
globalFieldPathsCache.Store(newCache)
}
path, ok := fieldPaths[name]
if !ok {
path, ok = fieldPaths[strings.ToLower(name)]
}
return path, ok
}
func forEachField(t reflect.Type, path []int, do func(name string, path []int)) {
n := t.NumField()
for i := 0; i < n; i++ {
f := t.Field(i)
if !f.Anonymous && f.PkgPath != "" {
// only consider exported fields.
continue
}
fieldPath := append(path, i)
fieldPath = fieldPath[:len(fieldPath):len(fieldPath)]
name := f.Tag.Get("toml")
if name == "-" {
continue
}
if i := strings.IndexByte(name, ','); i >= 0 {
name = name[:i]
}
if f.Anonymous && name == "" {
t2 := f.Type
if t2.Kind() == reflect.Ptr {
t2 = t2.Elem()
}
if t2.Kind() == reflect.Struct {
forEachField(t2, fieldPath, do)
}
continue
}
if name == "" {
name = f.Name
}
do(name, fieldPath)
}
}
|