summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/klauspost/compress/s2/decode_amd64.s
blob: 9b105e03c59ca511b88ce22f2cdef597f95fd18c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// Copyright 2016 The Go Authors. All rights reserved.
// Copyright (c) 2019 Klaus Post. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build !appengine
// +build gc
// +build !noasm

#include "textflag.h"

#define R_TMP0 AX
#define R_TMP1 BX
#define R_LEN CX
#define R_OFF DX
#define R_SRC SI
#define R_DST DI
#define R_DBASE R8
#define R_DLEN R9
#define R_DEND R10
#define R_SBASE R11
#define R_SLEN R12
#define R_SEND R13
#define R_TMP2 R14
#define R_TMP3 R15

// The asm code generally follows the pure Go code in decode_other.go, except
// where marked with a "!!!".

// func decode(dst, src []byte) int
//
// All local variables fit into registers. The non-zero stack size is only to
// spill registers and push args when issuing a CALL. The register allocation:
//	- R_TMP0	scratch
//	- R_TMP1	scratch
//	- R_LEN	    length or x (shared)
//	- R_OFF	    offset
//	- R_SRC	    &src[s]
//	- R_DST	    &dst[d]
//	+ R_DBASE	dst_base
//	+ R_DLEN	dst_len
//	+ R_DEND	dst_base + dst_len
//	+ R_SBASE	src_base
//	+ R_SLEN	src_len
//	+ R_SEND	src_base + src_len
//	- R_TMP2	used by doCopy
//	- R_TMP3	used by doCopy
//
// The registers R_DBASE-R_SEND (marked with a "+") are set at the start of the
// function, and after a CALL returns, and are not otherwise modified.
//
// The d variable is implicitly R_DST - R_DBASE,  and len(dst)-d is R_DEND - R_DST.
// The s variable is implicitly R_SRC - R_SBASE, and len(src)-s is R_SEND - R_SRC.
TEXT ·s2Decode(SB), NOSPLIT, $48-56
	// Initialize R_SRC, R_DST and R_DBASE-R_SEND.
	MOVQ dst_base+0(FP), R_DBASE
	MOVQ dst_len+8(FP), R_DLEN
	MOVQ R_DBASE, R_DST
	MOVQ R_DBASE, R_DEND
	ADDQ R_DLEN, R_DEND
	MOVQ src_base+24(FP), R_SBASE
	MOVQ src_len+32(FP), R_SLEN
	MOVQ R_SBASE, R_SRC
	MOVQ R_SBASE, R_SEND
	ADDQ R_SLEN, R_SEND
	XORQ R_OFF, R_OFF

loop:
	// for s < len(src)
	CMPQ R_SRC, R_SEND
	JEQ  end

	// R_LEN = uint32(src[s])
	//
	// switch src[s] & 0x03
	MOVBLZX (R_SRC), R_LEN
	MOVL    R_LEN, R_TMP1
	ANDL    $3, R_TMP1
	CMPL    R_TMP1, $1
	JAE     tagCopy

	// ----------------------------------------
	// The code below handles literal tags.

	// case tagLiteral:
	// x := uint32(src[s] >> 2)
	// switch
	SHRL $2, R_LEN
	CMPL R_LEN, $60
	JAE  tagLit60Plus

	// case x < 60:
	// s++
	INCQ R_SRC

doLit:
	// This is the end of the inner "switch", when we have a literal tag.
	//
	// We assume that R_LEN == x and x fits in a uint32, where x is the variable
	// used in the pure Go decode_other.go code.

	// length = int(x) + 1
	//
	// Unlike the pure Go code, we don't need to check if length <= 0 because
	// R_LEN can hold 64 bits, so the increment cannot overflow.
	INCQ R_LEN

	// Prepare to check if copying length bytes will run past the end of dst or
	// src.
	//
	// R_TMP0 = len(dst) - d
	// R_TMP1 = len(src) - s
	MOVQ R_DEND, R_TMP0
	SUBQ R_DST, R_TMP0
	MOVQ R_SEND, R_TMP1
	SUBQ R_SRC, R_TMP1

	// !!! Try a faster technique for short (16 or fewer bytes) copies.
	//
	// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
	//   goto callMemmove // Fall back on calling runtime·memmove.
	// }
	//
	// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
	// against 21 instead of 16, because it cannot assume that all of its input
	// is contiguous in memory and so it needs to leave enough source bytes to
	// read the next tag without refilling buffers, but Go's Decode assumes
	// contiguousness (the src argument is a []byte).
	CMPQ R_LEN, $16
	JGT  callMemmove
	CMPQ R_TMP0, $16
	JLT  callMemmove
	CMPQ R_TMP1, $16
	JLT  callMemmove

	// !!! Implement the copy from src to dst as a 16-byte load and store.
	// (Decode's documentation says that dst and src must not overlap.)
	//
	// This always copies 16 bytes, instead of only length bytes, but that's
	// OK. If the input is a valid Snappy encoding then subsequent iterations
	// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
	// non-nil error), so the overrun will be ignored.
	//
	// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
	// 16-byte loads and stores. This technique probably wouldn't be as
	// effective on architectures that are fussier about alignment.
	MOVOU 0(R_SRC), X0
	MOVOU X0, 0(R_DST)

	// d += length
	// s += length
	ADDQ R_LEN, R_DST
	ADDQ R_LEN, R_SRC
	JMP  loop

callMemmove:
	// if length > len(dst)-d || length > len(src)-s { etc }
	CMPQ R_LEN, R_TMP0
	JGT  errCorrupt
	CMPQ R_LEN, R_TMP1
	JGT  errCorrupt

	// copy(dst[d:], src[s:s+length])
	//
	// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
	// R_DST, R_SRC and R_LEN as arguments. Coincidentally, we also need to spill those
	// three registers to the stack, to save local variables across the CALL.
	MOVQ R_DST, 0(SP)
	MOVQ R_SRC, 8(SP)
	MOVQ R_LEN, 16(SP)
	MOVQ R_DST, 24(SP)
	MOVQ R_SRC, 32(SP)
	MOVQ R_LEN, 40(SP)
	MOVQ R_OFF, 48(SP)
	CALL runtime·memmove(SB)

	// Restore local variables: unspill registers from the stack and
	// re-calculate R_DBASE-R_SEND.
	MOVQ 24(SP), R_DST
	MOVQ 32(SP), R_SRC
	MOVQ 40(SP), R_LEN
	MOVQ 48(SP), R_OFF
	MOVQ dst_base+0(FP), R_DBASE
	MOVQ dst_len+8(FP), R_DLEN
	MOVQ R_DBASE, R_DEND
	ADDQ R_DLEN, R_DEND
	MOVQ src_base+24(FP), R_SBASE
	MOVQ src_len+32(FP), R_SLEN
	MOVQ R_SBASE, R_SEND
	ADDQ R_SLEN, R_SEND

	// d += length
	// s += length
	ADDQ R_LEN, R_DST
	ADDQ R_LEN, R_SRC
	JMP  loop

tagLit60Plus:
	// !!! This fragment does the
	//
	// s += x - 58; if uint(s) > uint(len(src)) { etc }
	//
	// checks. In the asm version, we code it once instead of once per switch case.
	ADDQ R_LEN, R_SRC
	SUBQ $58, R_SRC
	CMPQ R_SRC, R_SEND
	JA   errCorrupt

	// case x == 60:
	CMPL R_LEN, $61
	JEQ  tagLit61
	JA   tagLit62Plus

	// x = uint32(src[s-1])
	MOVBLZX -1(R_SRC), R_LEN
	JMP     doLit

tagLit61:
	// case x == 61:
	// x = uint32(src[s-2]) | uint32(src[s-1])<<8
	MOVWLZX -2(R_SRC), R_LEN
	JMP     doLit

tagLit62Plus:
	CMPL R_LEN, $62
	JA   tagLit63

	// case x == 62:
	// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
	// We read one byte, safe to read one back, since we are just reading tag.
	// x = binary.LittleEndian.Uint32(src[s-1:]) >> 8
	MOVL -4(R_SRC), R_LEN
	SHRL $8, R_LEN
	JMP  doLit

tagLit63:
	// case x == 63:
	// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
	MOVL -4(R_SRC), R_LEN
	JMP  doLit

// The code above handles literal tags.
// ----------------------------------------
// The code below handles copy tags.

tagCopy4:
	// case tagCopy4:
	// s += 5
	ADDQ $5, R_SRC

	// if uint(s) > uint(len(src)) { etc }
	CMPQ R_SRC, R_SEND
	JA   errCorrupt

	// length = 1 + int(src[s-5])>>2
	SHRQ $2, R_LEN
	INCQ R_LEN

	// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
	MOVLQZX -4(R_SRC), R_OFF
	JMP     doCopy

tagCopy2:
	// case tagCopy2:
	// s += 3
	ADDQ $3, R_SRC

	// if uint(s) > uint(len(src)) { etc }
	CMPQ R_SRC, R_SEND
	JA   errCorrupt

	// length = 1 + int(src[s-3])>>2
	SHRQ $2, R_LEN
	INCQ R_LEN

	// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
	MOVWQZX -2(R_SRC), R_OFF
	JMP     doCopy

tagCopy:
	// We have a copy tag. We assume that:
	//	- R_TMP1 == src[s] & 0x03
	//	- R_LEN == src[s]
	CMPQ R_TMP1, $2
	JEQ  tagCopy2
	JA   tagCopy4

	// case tagCopy1:
	// s += 2
	ADDQ $2, R_SRC

	// if uint(s) > uint(len(src)) { etc }
	CMPQ R_SRC, R_SEND
	JA   errCorrupt

	// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
	// length = 4 + int(src[s-2])>>2&0x7
	MOVBQZX -1(R_SRC), R_TMP1
	MOVQ    R_LEN, R_TMP0
	SHRQ    $2, R_LEN
	ANDQ    $0xe0, R_TMP0
	ANDQ    $7, R_LEN
	SHLQ    $3, R_TMP0
	ADDQ    $4, R_LEN
	ORQ     R_TMP1, R_TMP0

	// check if repeat code, ZF set by ORQ.
	JZ repeatCode

	// This is a regular copy, transfer our temporary value to R_OFF (length)
	MOVQ R_TMP0, R_OFF
	JMP  doCopy

// This is a repeat code.
repeatCode:
	// If length < 9, reuse last offset, with the length already calculated.
	CMPQ R_LEN, $9
	JL   doCopyRepeat

	// Read additional bytes for length.
	JE repeatLen1

	// Rare, so the extra branch shouldn't hurt too much.
	CMPQ R_LEN, $10
	JE   repeatLen2
	JMP  repeatLen3

// Read repeat lengths.
repeatLen1:
	// s ++
	ADDQ $1, R_SRC

	// if uint(s) > uint(len(src)) { etc }
	CMPQ R_SRC, R_SEND
	JA   errCorrupt

	// length = src[s-1] + 8
	MOVBQZX -1(R_SRC), R_LEN
	ADDL    $8, R_LEN
	JMP     doCopyRepeat

repeatLen2:
	// s +=2
	ADDQ $2, R_SRC

	// if uint(s) > uint(len(src)) { etc }
	CMPQ R_SRC, R_SEND
	JA   errCorrupt

	// length = uint32(src[s-2]) | (uint32(src[s-1])<<8) + (1 << 8)
	MOVWQZX -2(R_SRC), R_LEN
	ADDL    $260, R_LEN
	JMP     doCopyRepeat

repeatLen3:
	// s +=3
	ADDQ $3, R_SRC

	// if uint(s) > uint(len(src)) { etc }
	CMPQ R_SRC, R_SEND
	JA   errCorrupt

	// length = uint32(src[s-3]) | (uint32(src[s-2])<<8) | (uint32(src[s-1])<<16) + (1 << 16)
	// Read one byte further back (just part of the tag, shifted out)
	MOVL -4(R_SRC), R_LEN
	SHRL $8, R_LEN
	ADDL $65540, R_LEN
	JMP  doCopyRepeat

doCopy:
	// This is the end of the outer "switch", when we have a copy tag.
	//
	// We assume that:
	//	- R_LEN == length && R_LEN > 0
	//	- R_OFF == offset

	// if d < offset { etc }
	MOVQ R_DST, R_TMP1
	SUBQ R_DBASE, R_TMP1
	CMPQ R_TMP1, R_OFF
	JLT  errCorrupt

	// Repeat values can skip the test above, since any offset > 0 will be in dst.
doCopyRepeat:
	// if offset <= 0 { etc }
	CMPQ R_OFF, $0
	JLE  errCorrupt

	// if length > len(dst)-d { etc }
	MOVQ R_DEND, R_TMP1
	SUBQ R_DST, R_TMP1
	CMPQ R_LEN, R_TMP1
	JGT  errCorrupt

	// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
	//
	// Set:
	//	- R_TMP2 = len(dst)-d
	//	- R_TMP3 = &dst[d-offset]
	MOVQ R_DEND, R_TMP2
	SUBQ R_DST, R_TMP2
	MOVQ R_DST, R_TMP3
	SUBQ R_OFF, R_TMP3

	// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
	//
	// First, try using two 8-byte load/stores, similar to the doLit technique
	// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
	// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
	// and not one 16-byte load/store, and the first store has to be before the
	// second load, due to the overlap if offset is in the range [8, 16).
	//
	// if length > 16 || offset < 8 || len(dst)-d < 16 {
	//   goto slowForwardCopy
	// }
	// copy 16 bytes
	// d += length
	CMPQ R_LEN, $16
	JGT  slowForwardCopy
	CMPQ R_OFF, $8
	JLT  slowForwardCopy
	CMPQ R_TMP2, $16
	JLT  slowForwardCopy
	MOVQ 0(R_TMP3), R_TMP0
	MOVQ R_TMP0, 0(R_DST)
	MOVQ 8(R_TMP3), R_TMP1
	MOVQ R_TMP1, 8(R_DST)
	ADDQ R_LEN, R_DST
	JMP  loop

slowForwardCopy:
	// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
	// can still try 8-byte load stores, provided we can overrun up to 10 extra
	// bytes. As above, the overrun will be fixed up by subsequent iterations
	// of the outermost loop.
	//
	// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
	// commentary says:
	//
	// ----
	//
	// The main part of this loop is a simple copy of eight bytes at a time
	// until we've copied (at least) the requested amount of bytes.  However,
	// if d and d-offset are less than eight bytes apart (indicating a
	// repeating pattern of length < 8), we first need to expand the pattern in
	// order to get the correct results. For instance, if the buffer looks like
	// this, with the eight-byte <d-offset> and <d> patterns marked as
	// intervals:
	//
	//    abxxxxxxxxxxxx
	//    [------]           d-offset
	//      [------]         d
	//
	// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
	// once, after which we can move <d> two bytes without moving <d-offset>:
	//
	//    ababxxxxxxxxxx
	//    [------]           d-offset
	//        [------]       d
	//
	// and repeat the exercise until the two no longer overlap.
	//
	// This allows us to do very well in the special case of one single byte
	// repeated many times, without taking a big hit for more general cases.
	//
	// The worst case of extra writing past the end of the match occurs when
	// offset == 1 and length == 1; the last copy will read from byte positions
	// [0..7] and write to [4..11], whereas it was only supposed to write to
	// position 1. Thus, ten excess bytes.
	//
	// ----
	//
	// That "10 byte overrun" worst case is confirmed by Go's
	// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
	// and finishSlowForwardCopy algorithm.
	//
	// if length > len(dst)-d-10 {
	//   goto verySlowForwardCopy
	// }
	SUBQ $10, R_TMP2
	CMPQ R_LEN, R_TMP2
	JGT  verySlowForwardCopy

	// We want to keep the offset, so we use R_TMP2 from here.
	MOVQ R_OFF, R_TMP2

makeOffsetAtLeast8:
	// !!! As above, expand the pattern so that offset >= 8 and we can use
	// 8-byte load/stores.
	//
	// for offset < 8 {
	//   copy 8 bytes from dst[d-offset:] to dst[d:]
	//   length -= offset
	//   d      += offset
	//   offset += offset
	//   // The two previous lines together means that d-offset, and therefore
	//   // R_TMP3, is unchanged.
	// }
	CMPQ R_TMP2, $8
	JGE  fixUpSlowForwardCopy
	MOVQ (R_TMP3), R_TMP1
	MOVQ R_TMP1, (R_DST)
	SUBQ R_TMP2, R_LEN
	ADDQ R_TMP2, R_DST
	ADDQ R_TMP2, R_TMP2
	JMP  makeOffsetAtLeast8

fixUpSlowForwardCopy:
	// !!! Add length (which might be negative now) to d (implied by R_DST being
	// &dst[d]) so that d ends up at the right place when we jump back to the
	// top of the loop. Before we do that, though, we save R_DST to R_TMP0 so that, if
	// length is positive, copying the remaining length bytes will write to the
	// right place.
	MOVQ R_DST, R_TMP0
	ADDQ R_LEN, R_DST

finishSlowForwardCopy:
	// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
	// length means that we overrun, but as above, that will be fixed up by
	// subsequent iterations of the outermost loop.
	CMPQ R_LEN, $0
	JLE  loop
	MOVQ (R_TMP3), R_TMP1
	MOVQ R_TMP1, (R_TMP0)
	ADDQ $8, R_TMP3
	ADDQ $8, R_TMP0
	SUBQ $8, R_LEN
	JMP  finishSlowForwardCopy

verySlowForwardCopy:
	// verySlowForwardCopy is a simple implementation of forward copy. In C
	// parlance, this is a do/while loop instead of a while loop, since we know
	// that length > 0. In Go syntax:
	//
	// for {
	//   dst[d] = dst[d - offset]
	//   d++
	//   length--
	//   if length == 0 {
	//     break
	//   }
	// }
	MOVB (R_TMP3), R_TMP1
	MOVB R_TMP1, (R_DST)
	INCQ R_TMP3
	INCQ R_DST
	DECQ R_LEN
	JNZ  verySlowForwardCopy
	JMP  loop

// The code above handles copy tags.
// ----------------------------------------

end:
	// This is the end of the "for s < len(src)".
	//
	// if d != len(dst) { etc }
	CMPQ R_DST, R_DEND
	JNE  errCorrupt

	// return 0
	MOVQ $0, ret+48(FP)
	RET

errCorrupt:
	// return decodeErrCodeCorrupt
	MOVQ $1, ret+48(FP)
	RET