1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
#include "config.h"
#ifdef USE_ARM_NEON
/*
* Copyright © 2009 Nokia Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Author: Siarhei Siamashka (siarhei.siamashka@nokia.com)
*/
/*
* This file contains implementations of NEON optimized pixel processing
* functions. There is no full and detailed tutorial, but some functions
* (those which are exposing some new or interesting features) are
* extensively commented and can be used as examples.
*
* You may want to have a look at the comments for following functions:
* - pixman_composite_over_8888_0565_asm_neon
* - pixman_composite_over_n_8_0565_asm_neon
*/
/* Prevent the stack from becoming executable for no reason... */
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif
.text
.fpu neon
.arch armv7a
.object_arch armv4
.eabi_attribute 10, 0 /* suppress Tag_FP_arch */
.eabi_attribute 12, 0 /* suppress Tag_Advanced_SIMD_arch */
.arm
.altmacro
.p2align 2
//#include "pixman-arm-asm.h"
/* Supplementary macro for setting function attributes */
.macro pixman_asm_function fname
.func fname
.global fname
#ifdef __ELF__
.hidden fname
.type fname, %function
#endif
fname:
.endm
//#include "pixman-private.h"
/*
* The defines which are shared between C and assembly code
*/
/* bilinear interpolation precision (must be < 8) */
#define BILINEAR_INTERPOLATION_BITS 7
#define BILINEAR_INTERPOLATION_RANGE (1 << BILINEAR_INTERPOLATION_BITS)
#include "vector_pixman_pixman-arm-neon-asm.h"
/* Global configuration options and preferences */
/*
* The code can optionally make use of unaligned memory accesses to improve
* performance of handling leading/trailing pixels for each scanline.
* Configuration variable RESPECT_STRICT_ALIGNMENT can be set to 0 for
* example in linux if unaligned memory accesses are not configured to
* generate.exceptions.
*/
.set RESPECT_STRICT_ALIGNMENT, 1
/*
* Set default prefetch type. There is a choice between the following options:
*
* PREFETCH_TYPE_NONE (may be useful for the ARM cores where PLD is set to work
* as NOP to workaround some HW bugs or for whatever other reason)
*
* PREFETCH_TYPE_SIMPLE (may be useful for simple single-issue ARM cores where
* advanced prefetch intruduces heavy overhead)
*
* PREFETCH_TYPE_ADVANCED (useful for superscalar cores such as ARM Cortex-A8
* which can run ARM and NEON instructions simultaneously so that extra ARM
* instructions do not add (many) extra cycles, but improve prefetch efficiency)
*
* Note: some types of function can't support advanced prefetch and fallback
* to simple one (those which handle 24bpp pixels)
*/
.set PREFETCH_TYPE_DEFAULT, PREFETCH_TYPE_ADVANCED
/* Prefetch distance in pixels for simple prefetch */
.set PREFETCH_DISTANCE_SIMPLE, 64
/*
* Implementation of pixman_composite_over_8888_0565_asm_neon
*
* This function takes a8r8g8b8 source buffer, r5g6b5 destination buffer and
* performs OVER compositing operation. Function fast_composite_over_8888_0565
* from pixman-fast-path.c does the same in C and can be used as a reference.
*
* First we need to have some NEON assembly code which can do the actual
* operation on the pixels and provide it to the template macro.
*
* Template macro quite conveniently takes care of emitting all the necessary
* code for memory reading and writing (including quite tricky cases of
* handling unaligned leading/trailing pixels), so we only need to deal with
* the data in NEON registers.
*
* NEON registers allocation in general is recommented to be the following:
* d0, d1, d2, d3 - contain loaded source pixel data
* d4, d5, d6, d7 - contain loaded destination pixels (if they are needed)
* d24, d25, d26, d27 - contain loading mask pixel data (if mask is used)
* d28, d29, d30, d31 - place for storing the result (destination pixels)
*
* As can be seen above, four 64-bit NEON registers are used for keeping
* intermediate pixel data and up to 8 pixels can be processed in one step
* for 32bpp formats (16 pixels for 16bpp, 32 pixels for 8bpp).
*
* This particular function uses the following registers allocation:
* d0, d1, d2, d3 - contain loaded source pixel data
* d4, d5 - contain loaded destination pixels (they are needed)
* d28, d29 - place for storing the result (destination pixels)
*/
/*
* Step one. We need to have some code to do some arithmetics on pixel data.
* This is implemented as a pair of macros: '*_head' and '*_tail'. When used
* back-to-back, they take pixel data from {d0, d1, d2, d3} and {d4, d5},
* perform all the needed calculations and write the result to {d28, d29}.
* The rationale for having two macros and not just one will be explained
* later. In practice, any single monolitic function which does the work can
* be split into two parts in any arbitrary way without affecting correctness.
*
* There is one special trick here too. Common template macro can optionally
* make our life a bit easier by doing R, G, B, A color components
* deinterleaving for 32bpp pixel formats (and this feature is used in
* 'pixman_composite_over_8888_0565_asm_neon' function). So it means that
* instead of having 8 packed pixels in {d0, d1, d2, d3} registers, we
* actually use d0 register for blue channel (a vector of eight 8-bit
* values), d1 register for green, d2 for red and d3 for alpha. This
* simple conversion can be also done with a few NEON instructions:
*
* Packed to planar conversion:
* vuzp.8 d0, d1
* vuzp.8 d2, d3
* vuzp.8 d1, d3
* vuzp.8 d0, d2
*
* Planar to packed conversion:
* vzip.8 d0, d2
* vzip.8 d1, d3
* vzip.8 d2, d3
* vzip.8 d0, d1
*
* But pixel can be loaded directly in planar format using VLD4.8 NEON
* instruction. It is 1 cycle slower than VLD1.32, so this is not always
* desirable, that's why deinterleaving is optional.
*
* But anyway, here is the code:
*/
/*
* OK, now we got almost everything that we need. Using the above two
* macros, the work can be done right. But now we want to optimize
* it a bit. ARM Cortex-A8 is an in-order core, and benefits really
* a lot from good code scheduling and software pipelining.
*
* Let's construct some code, which will run in the core main loop.
* Some pseudo-code of the main loop will look like this:
* head
* while (...) {
* tail
* head
* }
* tail
*
* It may look a bit weird, but this setup allows to hide instruction
* latencies better and also utilize dual-issue capability more
* efficiently (make pairs of load-store and ALU instructions).
*
* So what we need now is a '*_tail_head' macro, which will be used
* in the core main loop. A trivial straightforward implementation
* of this macro would look like this:
*
* pixman_composite_over_8888_0565_process_pixblock_tail
* vst1.16 {d28, d29}, [DST_W, :128]!
* vld1.16 {d4, d5}, [DST_R, :128]!
* vld4.32 {d0, d1, d2, d3}, [SRC]!
* pixman_composite_over_8888_0565_process_pixblock_head
* cache_preload 8, 8
*
* Now it also got some VLD/VST instructions. We simply can't move from
* processing one block of pixels to the other one with just arithmetics.
* The previously processed data needs to be written to memory and new
* data needs to be fetched. Fortunately, this main loop does not deal
* with partial leading/trailing pixels and can load/store a full block
* of pixels in a bulk. Additionally, destination buffer is already
* 16 bytes aligned here (which is good for performance).
*
* New things here are DST_R, DST_W, SRC and MASK identifiers. These
* are the aliases for ARM registers which are used as pointers for
* accessing data. We maintain separate pointers for reading and writing
* destination buffer (DST_R and DST_W).
*
* Another new thing is 'cache_preload' macro. It is used for prefetching
* data into CPU L2 cache and improve performance when dealing with large
* images which are far larger than cache size. It uses one argument
* (actually two, but they need to be the same here) - number of pixels
* in a block. Looking into 'pixman-arm-neon-asm.h' can provide some
* details about this macro. Moreover, if good performance is needed
* the code from this macro needs to be copied into '*_tail_head' macro
* and mixed with the rest of code for optimal instructions scheduling.
* We are actually doing it below.
*
* Now after all the explanations, here is the optimized code.
* Different instruction streams (originaling from '*_head', '*_tail'
* and 'cache_preload' macro) use different indentation levels for
* better readability. Actually taking the code from one of these
* indentation levels and ignoring a few VLD/VST instructions would
* result in exactly the code from '*_head', '*_tail' or 'cache_preload'
* macro!
*/
/*
* And now the final part. We are using 'generate_composite_function' macro
* to put all the stuff together. We are specifying the name of the function
* which we want to get, number of bits per pixel for the source, mask and
* destination (0 if unused, like mask in this case). Next come some bit
* flags:
* FLAG_DST_READWRITE - tells that the destination buffer is both read
* and written, for write-only buffer we would use
* FLAG_DST_WRITEONLY flag instead
* FLAG_DEINTERLEAVE_32BPP - tells that we prefer to work with planar data
* and separate color channels for 32bpp format.
* The next things are:
* - the number of pixels processed per iteration (8 in this case, because
* that's the maximum what can fit into four 64-bit NEON registers).
* - prefetch distance, measured in pixel blocks. In this case it is 5 times
* by 8 pixels. That would be 40 pixels, or up to 160 bytes. Optimal
* prefetch distance can be selected by running some benchmarks.
*
* After that we specify some macros, these are 'default_init',
* 'default_cleanup' here which are empty (but it is possible to have custom
* init/cleanup macros to be able to save/restore some extra NEON registers
* like d8-d15 or do anything else) followed by
* 'pixman_composite_over_8888_0565_process_pixblock_head',
* 'pixman_composite_over_8888_0565_process_pixblock_tail' and
* 'pixman_composite_over_8888_0565_process_pixblock_tail_head'
* which we got implemented above.
*
* The last part is the NEON registers allocation scheme.
*/
/******************************************************************************/
/******************************************************************************/
.macro pixman_composite_out_reverse_8888_8888_process_pixblock_head
vmvn.8 d24, d3 /* get inverted alpha */
/* do alpha blending */
vmull.u8 q8, d24, d4
vmull.u8 q9, d24, d5
vmull.u8 q10, d24, d6
vmull.u8 q11, d24, d7
.endm
.macro pixman_composite_out_reverse_8888_8888_process_pixblock_tail
vrshr.u16 q14, q8, #8
vrshr.u16 q15, q9, #8
vrshr.u16 q12, q10, #8
vrshr.u16 q13, q11, #8
vraddhn.u16 d28, q14, q8
vraddhn.u16 d29, q15, q9
vraddhn.u16 d30, q12, q10
vraddhn.u16 d31, q13, q11
.endm
/******************************************************************************/
.macro pixman_composite_over_8888_8888_process_pixblock_head
pixman_composite_out_reverse_8888_8888_process_pixblock_head
.endm
.macro pixman_composite_over_8888_8888_process_pixblock_tail
pixman_composite_out_reverse_8888_8888_process_pixblock_tail
vqadd.u8 q14, q0, q14
vqadd.u8 q15, q1, q15
.endm
.macro pixman_composite_over_8888_8888_process_pixblock_tail_head
vld4.8 {d4, d5, d6, d7}, [DST_R, :128]!
vrshr.u16 q14, q8, #8
PF add PF_X, PF_X, #8
PF tst PF_CTL, #0xF
vrshr.u16 q15, q9, #8
vrshr.u16 q12, q10, #8
vrshr.u16 q13, q11, #8
PF addne PF_X, PF_X, #8
PF subne PF_CTL, PF_CTL, #1
vraddhn.u16 d28, q14, q8
vraddhn.u16 d29, q15, q9
PF cmp PF_X, ORIG_W
vraddhn.u16 d30, q12, q10
vraddhn.u16 d31, q13, q11
vqadd.u8 q14, q0, q14
vqadd.u8 q15, q1, q15
fetch_src_pixblock
PF pld, [PF_SRC, PF_X, lsl #src_bpp_shift]
vmvn.8 d22, d3
PF pld, [PF_DST, PF_X, lsl #dst_bpp_shift]
vst4.8 {d28, d29, d30, d31}, [DST_W, :128]!
PF subge PF_X, PF_X, ORIG_W
vmull.u8 q8, d22, d4
PF subges PF_CTL, PF_CTL, #0x10
vmull.u8 q9, d22, d5
PF ldrgeb DUMMY, [PF_SRC, SRC_STRIDE, lsl #src_bpp_shift]!
vmull.u8 q10, d22, d6
PF ldrgeb DUMMY, [PF_DST, DST_STRIDE, lsl #dst_bpp_shift]!
vmull.u8 q11, d22, d7
.endm
generate_composite_function \
pixman_composite_over_8888_8888_asm_neon, 32, 0, 32, \
FLAG_DST_READWRITE | FLAG_DEINTERLEAVE_32BPP, \
8, /* number of pixels, processed in a single block */ \
5, /* prefetch distance */ \
default_init, \
default_cleanup, \
pixman_composite_over_8888_8888_process_pixblock_head, \
pixman_composite_over_8888_8888_process_pixblock_tail, \
pixman_composite_over_8888_8888_process_pixblock_tail_head
generate_composite_function_single_scanline \
pixman_composite_scanline_over_asm_neon, 32, 0, 32, \
FLAG_DST_READWRITE | FLAG_DEINTERLEAVE_32BPP, \
8, /* number of pixels, processed in a single block */ \
default_init, \
default_cleanup, \
pixman_composite_over_8888_8888_process_pixblock_head, \
pixman_composite_over_8888_8888_process_pixblock_tail, \
pixman_composite_over_8888_8888_process_pixblock_tail_head
/******************************************************************************/
.macro pixman_composite_over_n_8888_process_pixblock_head
/* deinterleaved source pixels in {d0, d1, d2, d3} */
/* inverted alpha in {d24} */
/* destination pixels in {d4, d5, d6, d7} */
vmull.u8 q8, d24, d4
vmull.u8 q9, d24, d5
vmull.u8 q10, d24, d6
vmull.u8 q11, d24, d7
.endm
.macro pixman_composite_over_n_8888_process_pixblock_tail
vrshr.u16 q14, q8, #8
vrshr.u16 q15, q9, #8
vrshr.u16 q2, q10, #8
vrshr.u16 q3, q11, #8
vraddhn.u16 d28, q14, q8
vraddhn.u16 d29, q15, q9
vraddhn.u16 d30, q2, q10
vraddhn.u16 d31, q3, q11
vqadd.u8 q14, q0, q14
vqadd.u8 q15, q1, q15
.endm
.macro pixman_composite_over_n_8888_process_pixblock_tail_head
vrshr.u16 q14, q8, #8
vrshr.u16 q15, q9, #8
vrshr.u16 q2, q10, #8
vrshr.u16 q3, q11, #8
vraddhn.u16 d28, q14, q8
vraddhn.u16 d29, q15, q9
vraddhn.u16 d30, q2, q10
vraddhn.u16 d31, q3, q11
vld4.8 {d4, d5, d6, d7}, [DST_R, :128]!
vqadd.u8 q14, q0, q14
PF add PF_X, PF_X, #8
PF tst PF_CTL, #0x0F
PF addne PF_X, PF_X, #8
PF subne PF_CTL, PF_CTL, #1
vqadd.u8 q15, q1, q15
PF cmp PF_X, ORIG_W
vmull.u8 q8, d24, d4
PF pld, [PF_DST, PF_X, lsl #dst_bpp_shift]
vmull.u8 q9, d24, d5
PF subge PF_X, PF_X, ORIG_W
vmull.u8 q10, d24, d6
PF subges PF_CTL, PF_CTL, #0x10
vmull.u8 q11, d24, d7
PF ldrgeb DUMMY, [PF_DST, DST_STRIDE, lsl #dst_bpp_shift]!
vst4.8 {d28, d29, d30, d31}, [DST_W, :128]!
.endm
.macro pixman_composite_over_n_8888_init
add DUMMY, sp, #ARGS_STACK_OFFSET
vld1.32 {d3[0]}, [DUMMY]
vdup.8 d0, d3[0]
vdup.8 d1, d3[1]
vdup.8 d2, d3[2]
vdup.8 d3, d3[3]
vmvn.8 d24, d3 /* get inverted alpha */
.endm
generate_composite_function \
pixman_composite_over_n_8888_asm_neon, 0, 0, 32, \
FLAG_DST_READWRITE | FLAG_DEINTERLEAVE_32BPP, \
8, /* number of pixels, processed in a single block */ \
5, /* prefetch distance */ \
pixman_composite_over_n_8888_init, \
default_cleanup, \
pixman_composite_over_8888_8888_process_pixblock_head, \
pixman_composite_over_8888_8888_process_pixblock_tail, \
pixman_composite_over_n_8888_process_pixblock_tail_head
/******************************************************************************/
.macro pixman_composite_src_n_8888_process_pixblock_head
.endm
.macro pixman_composite_src_n_8888_process_pixblock_tail
.endm
.macro pixman_composite_src_n_8888_process_pixblock_tail_head
vst1.32 {d0, d1, d2, d3}, [DST_W, :128]!
.endm
.macro pixman_composite_src_n_8888_init
add DUMMY, sp, #ARGS_STACK_OFFSET
vld1.32 {d0[0]}, [DUMMY]
vsli.u64 d0, d0, #32
vorr d1, d0, d0
vorr q1, q0, q0
.endm
.macro pixman_composite_src_n_8888_cleanup
.endm
generate_composite_function \
pixman_composite_src_n_8888_asm_neon, 0, 0, 32, \
FLAG_DST_WRITEONLY, \
8, /* number of pixels, processed in a single block */ \
0, /* prefetch distance */ \
pixman_composite_src_n_8888_init, \
pixman_composite_src_n_8888_cleanup, \
pixman_composite_src_n_8888_process_pixblock_head, \
pixman_composite_src_n_8888_process_pixblock_tail, \
pixman_composite_src_n_8888_process_pixblock_tail_head, \
0, /* dst_w_basereg */ \
0, /* dst_r_basereg */ \
0, /* src_basereg */ \
0 /* mask_basereg */
/******************************************************************************/
.macro pixman_composite_src_8888_8888_process_pixblock_head
.endm
.macro pixman_composite_src_8888_8888_process_pixblock_tail
.endm
.macro pixman_composite_src_8888_8888_process_pixblock_tail_head
vst1.32 {d0, d1, d2, d3}, [DST_W, :128]!
fetch_src_pixblock
cache_preload 8, 8
.endm
generate_composite_function \
pixman_composite_src_8888_8888_asm_neon, 32, 0, 32, \
FLAG_DST_WRITEONLY, \
8, /* number of pixels, processed in a single block */ \
10, /* prefetch distance */ \
default_init, \
default_cleanup, \
pixman_composite_src_8888_8888_process_pixblock_head, \
pixman_composite_src_8888_8888_process_pixblock_tail, \
pixman_composite_src_8888_8888_process_pixblock_tail_head, \
0, /* dst_w_basereg */ \
0, /* dst_r_basereg */ \
0, /* src_basereg */ \
0 /* mask_basereg */
/******************************************************************************/
#endif
|