1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
// Copyright (c) 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edwards25519
// This file contains additional functionality that is not included in the
// upstream crypto/ed25519/internal/edwards25519 package.
import (
"errors"
"filippo.io/edwards25519/field"
)
// ExtendedCoordinates returns v in extended coordinates (X:Y:Z:T) where
// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
func (v *Point) ExtendedCoordinates() (X, Y, Z, T *field.Element) {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap. Don't change the style without making
// sure it doesn't increase the inliner cost.
var e [4]field.Element
X, Y, Z, T = v.extendedCoordinates(&e)
return
}
func (v *Point) extendedCoordinates(e *[4]field.Element) (X, Y, Z, T *field.Element) {
checkInitialized(v)
X = e[0].Set(&v.x)
Y = e[1].Set(&v.y)
Z = e[2].Set(&v.z)
T = e[3].Set(&v.t)
return
}
// SetExtendedCoordinates sets v = (X:Y:Z:T) in extended coordinates where
// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
//
// If the coordinates are invalid or don't represent a valid point on the curve,
// SetExtendedCoordinates returns nil and an error and the receiver is
// unchanged. Otherwise, SetExtendedCoordinates returns v.
func (v *Point) SetExtendedCoordinates(X, Y, Z, T *field.Element) (*Point, error) {
if !isOnCurve(X, Y, Z, T) {
return nil, errors.New("edwards25519: invalid point coordinates")
}
v.x.Set(X)
v.y.Set(Y)
v.z.Set(Z)
v.t.Set(T)
return v, nil
}
func isOnCurve(X, Y, Z, T *field.Element) bool {
var lhs, rhs field.Element
XX := new(field.Element).Square(X)
YY := new(field.Element).Square(Y)
ZZ := new(field.Element).Square(Z)
TT := new(field.Element).Square(T)
// -x² + y² = 1 + dx²y²
// -(X/Z)² + (Y/Z)² = 1 + d(T/Z)²
// -X² + Y² = Z² + dT²
lhs.Subtract(YY, XX)
rhs.Multiply(d, TT).Add(&rhs, ZZ)
if lhs.Equal(&rhs) != 1 {
return false
}
// xy = T/Z
// XY/Z² = T/Z
// XY = TZ
lhs.Multiply(X, Y)
rhs.Multiply(T, Z)
return lhs.Equal(&rhs) == 1
}
// BytesMontgomery converts v to a point on the birationally-equivalent
// Curve25519 Montgomery curve, and returns its canonical 32 bytes encoding
// according to RFC 7748.
//
// Note that BytesMontgomery only encodes the u-coordinate, so v and -v encode
// to the same value. If v is the identity point, BytesMontgomery returns 32
// zero bytes, analogously to the X25519 function.
func (v *Point) BytesMontgomery() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var buf [32]byte
return v.bytesMontgomery(&buf)
}
func (v *Point) bytesMontgomery(buf *[32]byte) []byte {
checkInitialized(v)
// RFC 7748, Section 4.1 provides the bilinear map to calculate the
// Montgomery u-coordinate
//
// u = (1 + y) / (1 - y)
//
// where y = Y / Z.
var y, recip, u field.Element
y.Multiply(&v.y, y.Invert(&v.z)) // y = Y / Z
recip.Invert(recip.Subtract(feOne, &y)) // r = 1/(1 - y)
u.Multiply(u.Add(feOne, &y), &recip) // u = (1 + y)*r
return copyFieldElement(buf, &u)
}
// MultByCofactor sets v = 8 * p, and returns v.
func (v *Point) MultByCofactor(p *Point) *Point {
checkInitialized(p)
result := projP1xP1{}
pp := (&projP2{}).FromP3(p)
result.Double(pp)
pp.FromP1xP1(&result)
result.Double(pp)
pp.FromP1xP1(&result)
result.Double(pp)
return v.fromP1xP1(&result)
}
// Given k > 0, set s = s**(2*i).
func (s *Scalar) pow2k(k int) {
for i := 0; i < k; i++ {
s.Multiply(s, s)
}
}
// Invert sets s to the inverse of a nonzero scalar v, and returns s.
//
// If t is zero, Invert returns zero.
func (s *Scalar) Invert(t *Scalar) *Scalar {
// Uses a hardcoded sliding window of width 4.
var table [8]Scalar
var tt Scalar
tt.Multiply(t, t)
table[0] = *t
for i := 0; i < 7; i++ {
table[i+1].Multiply(&table[i], &tt)
}
// Now table = [t**1, t**3, t**7, t**11, t**13, t**15]
// so t**k = t[k/2] for odd k
// To compute the sliding window digits, use the following Sage script:
// sage: import itertools
// sage: def sliding_window(w,k):
// ....: digits = []
// ....: while k > 0:
// ....: if k % 2 == 1:
// ....: kmod = k % (2**w)
// ....: digits.append(kmod)
// ....: k = k - kmod
// ....: else:
// ....: digits.append(0)
// ....: k = k // 2
// ....: return digits
// Now we can compute s roughly as follows:
// sage: s = 1
// sage: for coeff in reversed(sliding_window(4,l-2)):
// ....: s = s*s
// ....: if coeff > 0 :
// ....: s = s*t**coeff
// This works on one bit at a time, with many runs of zeros.
// The digits can be collapsed into [(count, coeff)] as follows:
// sage: [(len(list(group)),d) for d,group in itertools.groupby(sliding_window(4,l-2))]
// Entries of the form (k, 0) turn into pow2k(k)
// Entries of the form (1, coeff) turn into a squaring and then a table lookup.
// We can fold the squaring into the previous pow2k(k) as pow2k(k+1).
*s = table[1/2]
s.pow2k(127 + 1)
s.Multiply(s, &table[1/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[11/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[13/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[5/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[1/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[11/2])
s.pow2k(5 + 1)
s.Multiply(s, &table[11/2])
s.pow2k(9 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[13/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[11/2])
return s
}
// MultiScalarMult sets v = sum(scalars[i] * points[i]), and returns v.
//
// Execution time depends only on the lengths of the two slices, which must match.
func (v *Point) MultiScalarMult(scalars []*Scalar, points []*Point) *Point {
if len(scalars) != len(points) {
panic("edwards25519: called MultiScalarMult with different size inputs")
}
checkInitialized(points...)
// Proceed as in the single-base case, but share doublings
// between each point in the multiscalar equation.
// Build lookup tables for each point
tables := make([]projLookupTable, len(points))
for i := range tables {
tables[i].FromP3(points[i])
}
// Compute signed radix-16 digits for each scalar
digits := make([][64]int8, len(scalars))
for i := range digits {
digits[i] = scalars[i].signedRadix16()
}
// Unwrap first loop iteration to save computing 16*identity
multiple := &projCached{}
tmp1 := &projP1xP1{}
tmp2 := &projP2{}
// Lookup-and-add the appropriate multiple of each input point
for j := range tables {
tables[j].SelectInto(multiple, digits[j][63])
tmp1.Add(v, multiple) // tmp1 = v + x_(j,63)*Q in P1xP1 coords
v.fromP1xP1(tmp1) // update v
}
tmp2.FromP3(v) // set up tmp2 = v in P2 coords for next iteration
for i := 62; i >= 0; i-- {
tmp1.Double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 2*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 4*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 8*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords
v.fromP1xP1(tmp1) // v = 16*(prev) in P3 coords
// Lookup-and-add the appropriate multiple of each input point
for j := range tables {
tables[j].SelectInto(multiple, digits[j][i])
tmp1.Add(v, multiple) // tmp1 = v + x_(j,i)*Q in P1xP1 coords
v.fromP1xP1(tmp1) // update v
}
tmp2.FromP3(v) // set up tmp2 = v in P2 coords for next iteration
}
return v
}
// VarTimeMultiScalarMult sets v = sum(scalars[i] * points[i]), and returns v.
//
// Execution time depends on the inputs.
func (v *Point) VarTimeMultiScalarMult(scalars []*Scalar, points []*Point) *Point {
if len(scalars) != len(points) {
panic("edwards25519: called VarTimeMultiScalarMult with different size inputs")
}
checkInitialized(points...)
// Generalize double-base NAF computation to arbitrary sizes.
// Here all the points are dynamic, so we only use the smaller
// tables.
// Build lookup tables for each point
tables := make([]nafLookupTable5, len(points))
for i := range tables {
tables[i].FromP3(points[i])
}
// Compute a NAF for each scalar
nafs := make([][256]int8, len(scalars))
for i := range nafs {
nafs[i] = scalars[i].nonAdjacentForm(5)
}
multiple := &projCached{}
tmp1 := &projP1xP1{}
tmp2 := &projP2{}
tmp2.Zero()
// Move from high to low bits, doubling the accumulator
// at each iteration and checking whether there is a nonzero
// coefficient to look up a multiple of.
//
// Skip trying to find the first nonzero coefficent, because
// searching might be more work than a few extra doublings.
for i := 255; i >= 0; i-- {
tmp1.Double(tmp2)
for j := range nafs {
if nafs[j][i] > 0 {
v.fromP1xP1(tmp1)
tables[j].SelectInto(multiple, nafs[j][i])
tmp1.Add(v, multiple)
} else if nafs[j][i] < 0 {
v.fromP1xP1(tmp1)
tables[j].SelectInto(multiple, -nafs[j][i])
tmp1.Sub(v, multiple)
}
}
tmp2.FromP1xP1(tmp1)
}
v.fromP2(tmp2)
return v
}
|