summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/poly1305/sum_generic.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/poly1305/sum_generic.go')
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_generic.go310
1 files changed, 0 insertions, 310 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/poly1305/sum_generic.go
deleted file mode 100644
index c942a659..00000000
--- a/vendor/golang.org/x/crypto/poly1305/sum_generic.go
+++ /dev/null
@@ -1,310 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file provides the generic implementation of Sum and MAC. Other files
-// might provide optimized assembly implementations of some of this code.
-
-package poly1305
-
-import "encoding/binary"
-
-// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
-// for a 64 bytes message is approximately
-//
-// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5
-//
-// for some secret r and s. It can be computed sequentially like
-//
-// for len(msg) > 0:
-// h += read(msg, 16)
-// h *= r
-// h %= 2¹³⁰ - 5
-// return h + s
-//
-// All the complexity is about doing performant constant-time math on numbers
-// larger than any available numeric type.
-
-func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
- h := newMACGeneric(key)
- h.Write(msg)
- h.Sum(out)
-}
-
-func newMACGeneric(key *[32]byte) macGeneric {
- m := macGeneric{}
- initialize(key, &m.macState)
- return m
-}
-
-// macState holds numbers in saturated 64-bit little-endian limbs. That is,
-// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
-type macState struct {
- // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
- // can grow larger during and after rounds. It must, however, remain below
- // 2 * (2¹³⁰ - 5).
- h [3]uint64
- // r and s are the private key components.
- r [2]uint64
- s [2]uint64
-}
-
-type macGeneric struct {
- macState
-
- buffer [TagSize]byte
- offset int
-}
-
-// Write splits the incoming message into TagSize chunks, and passes them to
-// update. It buffers incomplete chunks.
-func (h *macGeneric) Write(p []byte) (int, error) {
- nn := len(p)
- if h.offset > 0 {
- n := copy(h.buffer[h.offset:], p)
- if h.offset+n < TagSize {
- h.offset += n
- return nn, nil
- }
- p = p[n:]
- h.offset = 0
- updateGeneric(&h.macState, h.buffer[:])
- }
- if n := len(p) - (len(p) % TagSize); n > 0 {
- updateGeneric(&h.macState, p[:n])
- p = p[n:]
- }
- if len(p) > 0 {
- h.offset += copy(h.buffer[h.offset:], p)
- }
- return nn, nil
-}
-
-// Sum flushes the last incomplete chunk from the buffer, if any, and generates
-// the MAC output. It does not modify its state, in order to allow for multiple
-// calls to Sum, even if no Write is allowed after Sum.
-func (h *macGeneric) Sum(out *[TagSize]byte) {
- state := h.macState
- if h.offset > 0 {
- updateGeneric(&state, h.buffer[:h.offset])
- }
- finalize(out, &state.h, &state.s)
-}
-
-// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
-// clears some bits of the secret coefficient to make it possible to implement
-// multiplication more efficiently.
-const (
- rMask0 = 0x0FFFFFFC0FFFFFFF
- rMask1 = 0x0FFFFFFC0FFFFFFC
-)
-
-// initialize loads the 256-bit key into the two 128-bit secret values r and s.
-func initialize(key *[32]byte, m *macState) {
- m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
- m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
- m.s[0] = binary.LittleEndian.Uint64(key[16:24])
- m.s[1] = binary.LittleEndian.Uint64(key[24:32])
-}
-
-// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
-// bits.Mul64 and bits.Add64 intrinsics.
-type uint128 struct {
- lo, hi uint64
-}
-
-func mul64(a, b uint64) uint128 {
- hi, lo := bitsMul64(a, b)
- return uint128{lo, hi}
-}
-
-func add128(a, b uint128) uint128 {
- lo, c := bitsAdd64(a.lo, b.lo, 0)
- hi, c := bitsAdd64(a.hi, b.hi, c)
- if c != 0 {
- panic("poly1305: unexpected overflow")
- }
- return uint128{lo, hi}
-}
-
-func shiftRightBy2(a uint128) uint128 {
- a.lo = a.lo>>2 | (a.hi&3)<<62
- a.hi = a.hi >> 2
- return a
-}
-
-// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
-// 128 bits of message, it computes
-//
-// h₊ = (h + m) * r mod 2¹³⁰ - 5
-//
-// If the msg length is not a multiple of TagSize, it assumes the last
-// incomplete chunk is the final one.
-func updateGeneric(state *macState, msg []byte) {
- h0, h1, h2 := state.h[0], state.h[1], state.h[2]
- r0, r1 := state.r[0], state.r[1]
-
- for len(msg) > 0 {
- var c uint64
-
- // For the first step, h + m, we use a chain of bits.Add64 intrinsics.
- // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
- // reduced at the end of the multiplication below.
- //
- // The spec requires us to set a bit just above the message size, not to
- // hide leading zeroes. For full chunks, that's 1 << 128, so we can just
- // add 1 to the most significant (2¹²⁸) limb, h2.
- if len(msg) >= TagSize {
- h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
- h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
- h2 += c + 1
-
- msg = msg[TagSize:]
- } else {
- var buf [TagSize]byte
- copy(buf[:], msg)
- buf[len(msg)] = 1
-
- h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
- h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
- h2 += c
-
- msg = nil
- }
-
- // Multiplication of big number limbs is similar to elementary school
- // columnar multiplication. Instead of digits, there are 64-bit limbs.
- //
- // We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
- //
- // h2 h1 h0 x
- // r1 r0 =
- // ----------------
- // h2r0 h1r0 h0r0 <-- individual 128-bit products
- // + h2r1 h1r1 h0r1
- // ------------------------
- // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs
- // ------------------------
- // m3.hi m2.hi m1.hi m0.hi <-- carry propagation
- // + m3.lo m2.lo m1.lo m0.lo
- // -------------------------------
- // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs
- //
- // The main difference from pen-and-paper multiplication is that we do
- // carry propagation in a separate step, as if we wrote two digit sums
- // at first (the 128-bit limbs), and then carried the tens all at once.
-
- h0r0 := mul64(h0, r0)
- h1r0 := mul64(h1, r0)
- h2r0 := mul64(h2, r0)
- h0r1 := mul64(h0, r1)
- h1r1 := mul64(h1, r1)
- h2r1 := mul64(h2, r1)
-
- // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
- // top 4 bits cleared by rMask{0,1}, we know that their product is not going
- // to overflow 64 bits, so we can ignore the high part of the products.
- //
- // This also means that the product doesn't have a fifth limb (t4).
- if h2r0.hi != 0 {
- panic("poly1305: unexpected overflow")
- }
- if h2r1.hi != 0 {
- panic("poly1305: unexpected overflow")
- }
-
- m0 := h0r0
- m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
- m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
- m3 := h2r1
-
- t0 := m0.lo
- t1, c := bitsAdd64(m1.lo, m0.hi, 0)
- t2, c := bitsAdd64(m2.lo, m1.hi, c)
- t3, _ := bitsAdd64(m3.lo, m2.hi, c)
-
- // Now we have the result as 4 64-bit limbs, and we need to reduce it
- // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
- // a cheap partial reduction according to the reduction identity
- //
- // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5
- //
- // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
- // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
- // assumptions we make about h in the rest of the code.
- //
- // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
-
- // We split the final result at the 2¹³⁰ mark into h and cc, the carry.
- // Note that the carry bits are effectively shifted left by 2, in other
- // words, cc = c * 4 for the c in the reduction identity.
- h0, h1, h2 = t0, t1, t2&maskLow2Bits
- cc := uint128{t2 & maskNotLow2Bits, t3}
-
- // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
-
- h0, c = bitsAdd64(h0, cc.lo, 0)
- h1, c = bitsAdd64(h1, cc.hi, c)
- h2 += c
-
- cc = shiftRightBy2(cc)
-
- h0, c = bitsAdd64(h0, cc.lo, 0)
- h1, c = bitsAdd64(h1, cc.hi, c)
- h2 += c
-
- // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
- //
- // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
- }
-
- state.h[0], state.h[1], state.h[2] = h0, h1, h2
-}
-
-const (
- maskLow2Bits uint64 = 0x0000000000000003
- maskNotLow2Bits uint64 = ^maskLow2Bits
-)
-
-// select64 returns x if v == 1 and y if v == 0, in constant time.
-func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
-
-// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
-const (
- p0 = 0xFFFFFFFFFFFFFFFB
- p1 = 0xFFFFFFFFFFFFFFFF
- p2 = 0x0000000000000003
-)
-
-// finalize completes the modular reduction of h and computes
-//
-// out = h + s mod 2¹²⁸
-//
-func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
- h0, h1, h2 := h[0], h[1], h[2]
-
- // After the partial reduction in updateGeneric, h might be more than
- // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
- // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
- // result if the subtraction underflows, and t otherwise.
-
- hMinusP0, b := bitsSub64(h0, p0, 0)
- hMinusP1, b := bitsSub64(h1, p1, b)
- _, b = bitsSub64(h2, p2, b)
-
- // h = h if h < p else h - p
- h0 = select64(b, h0, hMinusP0)
- h1 = select64(b, h1, hMinusP1)
-
- // Finally, we compute the last Poly1305 step
- //
- // tag = h + s mod 2¹²⁸
- //
- // by just doing a wide addition with the 128 low bits of h and discarding
- // the overflow.
- h0, c := bitsAdd64(h0, s[0], 0)
- h1, _ = bitsAdd64(h1, s[1], c)
-
- binary.LittleEndian.PutUint64(out[0:8], h0)
- binary.LittleEndian.PutUint64(out[8:16], h1)
-}