diff options
Diffstat (limited to 'vendor/golang.org/x/crypto/poly1305/sum_generic.go')
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_generic.go | 310 |
1 files changed, 0 insertions, 310 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/poly1305/sum_generic.go deleted file mode 100644 index c942a659..00000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_generic.go +++ /dev/null @@ -1,310 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file provides the generic implementation of Sum and MAC. Other files -// might provide optimized assembly implementations of some of this code. - -package poly1305 - -import "encoding/binary" - -// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag -// for a 64 bytes message is approximately -// -// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5 -// -// for some secret r and s. It can be computed sequentially like -// -// for len(msg) > 0: -// h += read(msg, 16) -// h *= r -// h %= 2¹³⁰ - 5 -// return h + s -// -// All the complexity is about doing performant constant-time math on numbers -// larger than any available numeric type. - -func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { - h := newMACGeneric(key) - h.Write(msg) - h.Sum(out) -} - -func newMACGeneric(key *[32]byte) macGeneric { - m := macGeneric{} - initialize(key, &m.macState) - return m -} - -// macState holds numbers in saturated 64-bit little-endian limbs. That is, -// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. -type macState struct { - // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but - // can grow larger during and after rounds. It must, however, remain below - // 2 * (2¹³⁰ - 5). - h [3]uint64 - // r and s are the private key components. - r [2]uint64 - s [2]uint64 -} - -type macGeneric struct { - macState - - buffer [TagSize]byte - offset int -} - -// Write splits the incoming message into TagSize chunks, and passes them to -// update. It buffers incomplete chunks. -func (h *macGeneric) Write(p []byte) (int, error) { - nn := len(p) - if h.offset > 0 { - n := copy(h.buffer[h.offset:], p) - if h.offset+n < TagSize { - h.offset += n - return nn, nil - } - p = p[n:] - h.offset = 0 - updateGeneric(&h.macState, h.buffer[:]) - } - if n := len(p) - (len(p) % TagSize); n > 0 { - updateGeneric(&h.macState, p[:n]) - p = p[n:] - } - if len(p) > 0 { - h.offset += copy(h.buffer[h.offset:], p) - } - return nn, nil -} - -// Sum flushes the last incomplete chunk from the buffer, if any, and generates -// the MAC output. It does not modify its state, in order to allow for multiple -// calls to Sum, even if no Write is allowed after Sum. -func (h *macGeneric) Sum(out *[TagSize]byte) { - state := h.macState - if h.offset > 0 { - updateGeneric(&state, h.buffer[:h.offset]) - } - finalize(out, &state.h, &state.s) -} - -// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It -// clears some bits of the secret coefficient to make it possible to implement -// multiplication more efficiently. -const ( - rMask0 = 0x0FFFFFFC0FFFFFFF - rMask1 = 0x0FFFFFFC0FFFFFFC -) - -// initialize loads the 256-bit key into the two 128-bit secret values r and s. -func initialize(key *[32]byte, m *macState) { - m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 - m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 - m.s[0] = binary.LittleEndian.Uint64(key[16:24]) - m.s[1] = binary.LittleEndian.Uint64(key[24:32]) -} - -// uint128 holds a 128-bit number as two 64-bit limbs, for use with the -// bits.Mul64 and bits.Add64 intrinsics. -type uint128 struct { - lo, hi uint64 -} - -func mul64(a, b uint64) uint128 { - hi, lo := bitsMul64(a, b) - return uint128{lo, hi} -} - -func add128(a, b uint128) uint128 { - lo, c := bitsAdd64(a.lo, b.lo, 0) - hi, c := bitsAdd64(a.hi, b.hi, c) - if c != 0 { - panic("poly1305: unexpected overflow") - } - return uint128{lo, hi} -} - -func shiftRightBy2(a uint128) uint128 { - a.lo = a.lo>>2 | (a.hi&3)<<62 - a.hi = a.hi >> 2 - return a -} - -// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of -// 128 bits of message, it computes -// -// h₊ = (h + m) * r mod 2¹³⁰ - 5 -// -// If the msg length is not a multiple of TagSize, it assumes the last -// incomplete chunk is the final one. -func updateGeneric(state *macState, msg []byte) { - h0, h1, h2 := state.h[0], state.h[1], state.h[2] - r0, r1 := state.r[0], state.r[1] - - for len(msg) > 0 { - var c uint64 - - // For the first step, h + m, we use a chain of bits.Add64 intrinsics. - // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially - // reduced at the end of the multiplication below. - // - // The spec requires us to set a bit just above the message size, not to - // hide leading zeroes. For full chunks, that's 1 << 128, so we can just - // add 1 to the most significant (2¹²⁸) limb, h2. - if len(msg) >= TagSize { - h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0) - h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c) - h2 += c + 1 - - msg = msg[TagSize:] - } else { - var buf [TagSize]byte - copy(buf[:], msg) - buf[len(msg)] = 1 - - h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0) - h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c) - h2 += c - - msg = nil - } - - // Multiplication of big number limbs is similar to elementary school - // columnar multiplication. Instead of digits, there are 64-bit limbs. - // - // We are multiplying a 3 limbs number, h, by a 2 limbs number, r. - // - // h2 h1 h0 x - // r1 r0 = - // ---------------- - // h2r0 h1r0 h0r0 <-- individual 128-bit products - // + h2r1 h1r1 h0r1 - // ------------------------ - // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs - // ------------------------ - // m3.hi m2.hi m1.hi m0.hi <-- carry propagation - // + m3.lo m2.lo m1.lo m0.lo - // ------------------------------- - // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs - // - // The main difference from pen-and-paper multiplication is that we do - // carry propagation in a separate step, as if we wrote two digit sums - // at first (the 128-bit limbs), and then carried the tens all at once. - - h0r0 := mul64(h0, r0) - h1r0 := mul64(h1, r0) - h2r0 := mul64(h2, r0) - h0r1 := mul64(h0, r1) - h1r1 := mul64(h1, r1) - h2r1 := mul64(h2, r1) - - // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their - // top 4 bits cleared by rMask{0,1}, we know that their product is not going - // to overflow 64 bits, so we can ignore the high part of the products. - // - // This also means that the product doesn't have a fifth limb (t4). - if h2r0.hi != 0 { - panic("poly1305: unexpected overflow") - } - if h2r1.hi != 0 { - panic("poly1305: unexpected overflow") - } - - m0 := h0r0 - m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again - m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1. - m3 := h2r1 - - t0 := m0.lo - t1, c := bitsAdd64(m1.lo, m0.hi, 0) - t2, c := bitsAdd64(m2.lo, m1.hi, c) - t3, _ := bitsAdd64(m3.lo, m2.hi, c) - - // Now we have the result as 4 64-bit limbs, and we need to reduce it - // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do - // a cheap partial reduction according to the reduction identity - // - // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5 - // - // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is - // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the - // assumptions we make about h in the rest of the code. - // - // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23 - - // We split the final result at the 2¹³⁰ mark into h and cc, the carry. - // Note that the carry bits are effectively shifted left by 2, in other - // words, cc = c * 4 for the c in the reduction identity. - h0, h1, h2 = t0, t1, t2&maskLow2Bits - cc := uint128{t2 & maskNotLow2Bits, t3} - - // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c. - - h0, c = bitsAdd64(h0, cc.lo, 0) - h1, c = bitsAdd64(h1, cc.hi, c) - h2 += c - - cc = shiftRightBy2(cc) - - h0, c = bitsAdd64(h0, cc.lo, 0) - h1, c = bitsAdd64(h1, cc.hi, c) - h2 += c - - // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most - // - // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1 - } - - state.h[0], state.h[1], state.h[2] = h0, h1, h2 -} - -const ( - maskLow2Bits uint64 = 0x0000000000000003 - maskNotLow2Bits uint64 = ^maskLow2Bits -) - -// select64 returns x if v == 1 and y if v == 0, in constant time. -func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y } - -// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order. -const ( - p0 = 0xFFFFFFFFFFFFFFFB - p1 = 0xFFFFFFFFFFFFFFFF - p2 = 0x0000000000000003 -) - -// finalize completes the modular reduction of h and computes -// -// out = h + s mod 2¹²⁸ -// -func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) { - h0, h1, h2 := h[0], h[1], h[2] - - // After the partial reduction in updateGeneric, h might be more than - // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction - // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the - // result if the subtraction underflows, and t otherwise. - - hMinusP0, b := bitsSub64(h0, p0, 0) - hMinusP1, b := bitsSub64(h1, p1, b) - _, b = bitsSub64(h2, p2, b) - - // h = h if h < p else h - p - h0 = select64(b, h0, hMinusP0) - h1 = select64(b, h1, hMinusP1) - - // Finally, we compute the last Poly1305 step - // - // tag = h + s mod 2¹²⁸ - // - // by just doing a wide addition with the 128 low bits of h and discarding - // the overflow. - h0, c := bitsAdd64(h0, s[0], 0) - h1, _ = bitsAdd64(h1, s[1], c) - - binary.LittleEndian.PutUint64(out[0:8], h0) - binary.LittleEndian.PutUint64(out[8:16], h1) -} |