diff options
Diffstat (limited to 'vendor/golang.org/x/crypto/poly1305/sum_generic.go')
-rw-r--r-- | vendor/golang.org/x/crypto/poly1305/sum_generic.go | 391 |
1 files changed, 263 insertions, 128 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/poly1305/sum_generic.go index bab76ef0..1187eab7 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_generic.go +++ b/vendor/golang.org/x/crypto/poly1305/sum_generic.go @@ -2,18 +2,29 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. +// This file provides the generic implementation of Sum and MAC. Other files +// might provide optimized assembly implementations of some of this code. + package poly1305 import "encoding/binary" -const ( - msgBlock = uint32(1 << 24) - finalBlock = uint32(0) -) +// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag +// for a 64 bytes message is approximately +// +// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5 +// +// for some secret r and s. It can be computed sequentially like +// +// for len(msg) > 0: +// h += read(msg, 16) +// h *= r +// h %= 2¹³⁰ - 5 +// return h + s +// +// All the complexity is about doing performant constant-time math on numbers +// larger than any available numeric type. -// sumGeneric generates an authenticator for msg using a one-time key and -// puts the 16-byte result into out. This is the generic implementation of -// Sum and should be called if no assembly implementation is available. func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { h := newMACGeneric(key) h.Write(msg) @@ -21,152 +32,276 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { } func newMACGeneric(key *[32]byte) (h macGeneric) { - h.r[0] = binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff - h.r[1] = (binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03 - h.r[2] = (binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff - h.r[3] = (binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff - h.r[4] = (binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff - - h.s[0] = binary.LittleEndian.Uint32(key[16:]) - h.s[1] = binary.LittleEndian.Uint32(key[20:]) - h.s[2] = binary.LittleEndian.Uint32(key[24:]) - h.s[3] = binary.LittleEndian.Uint32(key[28:]) + initialize(key, &h.r, &h.s) return } +// macState holds numbers in saturated 64-bit little-endian limbs. That is, +// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. +type macState struct { + // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but + // can grow larger during and after rounds. + h [3]uint64 + // r and s are the private key components. + r [2]uint64 + s [2]uint64 +} + type macGeneric struct { - h, r [5]uint32 - s [4]uint32 + macState buffer [TagSize]byte offset int } -func (h *macGeneric) Write(p []byte) (n int, err error) { - n = len(p) +// Write splits the incoming message into TagSize chunks, and passes them to +// update. It buffers incomplete chunks. +func (h *macGeneric) Write(p []byte) (int, error) { + nn := len(p) if h.offset > 0 { - remaining := TagSize - h.offset - if n < remaining { - h.offset += copy(h.buffer[h.offset:], p) - return n, nil + n := copy(h.buffer[h.offset:], p) + if h.offset+n < TagSize { + h.offset += n + return nn, nil } - copy(h.buffer[h.offset:], p[:remaining]) - p = p[remaining:] + p = p[n:] h.offset = 0 - updateGeneric(h.buffer[:], msgBlock, &(h.h), &(h.r)) + updateGeneric(&h.macState, h.buffer[:]) } - if nn := len(p) - (len(p) % TagSize); nn > 0 { - updateGeneric(p, msgBlock, &(h.h), &(h.r)) - p = p[nn:] + if n := len(p) - (len(p) % TagSize); n > 0 { + updateGeneric(&h.macState, p[:n]) + p = p[n:] } if len(p) > 0 { h.offset += copy(h.buffer[h.offset:], p) } - return n, nil + return nn, nil } -func (h *macGeneric) Sum(out *[16]byte) { - H, R := h.h, h.r +// Sum flushes the last incomplete chunk from the buffer, if any, and generates +// the MAC output. It does not modify its state, in order to allow for multiple +// calls to Sum, even if no Write is allowed after Sum. +func (h *macGeneric) Sum(out *[TagSize]byte) { + state := h.macState if h.offset > 0 { - var buffer [TagSize]byte - copy(buffer[:], h.buffer[:h.offset]) - buffer[h.offset] = 1 // invariant: h.offset < TagSize - updateGeneric(buffer[:], finalBlock, &H, &R) + updateGeneric(&state, h.buffer[:h.offset]) } - finalizeGeneric(out, &H, &(h.s)) + finalize(out, &state.h, &state.s) +} + +// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It +// clears some bits of the secret coefficient to make it possible to implement +// multiplication more efficiently. +const ( + rMask0 = 0x0FFFFFFC0FFFFFFF + rMask1 = 0x0FFFFFFC0FFFFFFC +) + +func initialize(key *[32]byte, r, s *[2]uint64) { + r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 + r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 + s[0] = binary.LittleEndian.Uint64(key[16:24]) + s[1] = binary.LittleEndian.Uint64(key[24:32]) +} + +// uint128 holds a 128-bit number as two 64-bit limbs, for use with the +// bits.Mul64 and bits.Add64 intrinsics. +type uint128 struct { + lo, hi uint64 +} + +func mul64(a, b uint64) uint128 { + hi, lo := bitsMul64(a, b) + return uint128{lo, hi} } -func updateGeneric(msg []byte, flag uint32, h, r *[5]uint32) { - h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4] - r0, r1, r2, r3, r4 := uint64(r[0]), uint64(r[1]), uint64(r[2]), uint64(r[3]), uint64(r[4]) - R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5 - - for len(msg) >= TagSize { - // h += msg - h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff - h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff - h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff - h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff - h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | flag - - // h *= r - d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1) - d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2) - d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3) - d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4) - d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0) - - // h %= p - h0 = uint32(d0) & 0x3ffffff - h1 = uint32(d1) & 0x3ffffff - h2 = uint32(d2) & 0x3ffffff - h3 = uint32(d3) & 0x3ffffff - h4 = uint32(d4) & 0x3ffffff - - h0 += uint32(d4>>26) * 5 - h1 += h0 >> 26 - h0 = h0 & 0x3ffffff - - msg = msg[TagSize:] +func add128(a, b uint128) uint128 { + lo, c := bitsAdd64(a.lo, b.lo, 0) + hi, c := bitsAdd64(a.hi, b.hi, c) + if c != 0 { + panic("poly1305: unexpected overflow") } + return uint128{lo, hi} +} - h[0], h[1], h[2], h[3], h[4] = h0, h1, h2, h3, h4 +func shiftRightBy2(a uint128) uint128 { + a.lo = a.lo>>2 | (a.hi&3)<<62 + a.hi = a.hi >> 2 + return a } -func finalizeGeneric(out *[TagSize]byte, h *[5]uint32, s *[4]uint32) { - h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4] - - // h %= p reduction - h2 += h1 >> 26 - h1 &= 0x3ffffff - h3 += h2 >> 26 - h2 &= 0x3ffffff - h4 += h3 >> 26 - h3 &= 0x3ffffff - h0 += 5 * (h4 >> 26) - h4 &= 0x3ffffff - h1 += h0 >> 26 - h0 &= 0x3ffffff - - // h - p - t0 := h0 + 5 - t1 := h1 + (t0 >> 26) - t2 := h2 + (t1 >> 26) - t3 := h3 + (t2 >> 26) - t4 := h4 + (t3 >> 26) - (1 << 26) - t0 &= 0x3ffffff - t1 &= 0x3ffffff - t2 &= 0x3ffffff - t3 &= 0x3ffffff - - // select h if h < p else h - p - t_mask := (t4 >> 31) - 1 - h_mask := ^t_mask - h0 = (h0 & h_mask) | (t0 & t_mask) - h1 = (h1 & h_mask) | (t1 & t_mask) - h2 = (h2 & h_mask) | (t2 & t_mask) - h3 = (h3 & h_mask) | (t3 & t_mask) - h4 = (h4 & h_mask) | (t4 & t_mask) - - // h %= 2^128 - h0 |= h1 << 26 - h1 = ((h1 >> 6) | (h2 << 20)) - h2 = ((h2 >> 12) | (h3 << 14)) - h3 = ((h3 >> 18) | (h4 << 8)) - - // s: the s part of the key - // tag = (h + s) % (2^128) - t := uint64(h0) + uint64(s[0]) - h0 = uint32(t) - t = uint64(h1) + uint64(s[1]) + (t >> 32) - h1 = uint32(t) - t = uint64(h2) + uint64(s[2]) + (t >> 32) - h2 = uint32(t) - t = uint64(h3) + uint64(s[3]) + (t >> 32) - h3 = uint32(t) - - binary.LittleEndian.PutUint32(out[0:], h0) - binary.LittleEndian.PutUint32(out[4:], h1) - binary.LittleEndian.PutUint32(out[8:], h2) - binary.LittleEndian.PutUint32(out[12:], h3) +// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of +// 128 bits of message, it computes +// +// h₊ = (h + m) * r mod 2¹³⁰ - 5 +// +// If the msg length is not a multiple of TagSize, it assumes the last +// incomplete chunk is the final one. +func updateGeneric(state *macState, msg []byte) { + h0, h1, h2 := state.h[0], state.h[1], state.h[2] + r0, r1 := state.r[0], state.r[1] + + for len(msg) > 0 { + var c uint64 + + // For the first step, h + m, we use a chain of bits.Add64 intrinsics. + // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially + // reduced at the end of the multiplication below. + // + // The spec requires us to set a bit just above the message size, not to + // hide leading zeroes. For full chunks, that's 1 << 128, so we can just + // add 1 to the most significant (2¹²⁸) limb, h2. + if len(msg) >= TagSize { + h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0) + h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c) + h2 += c + 1 + + msg = msg[TagSize:] + } else { + var buf [TagSize]byte + copy(buf[:], msg) + buf[len(msg)] = 1 + + h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0) + h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c) + h2 += c + + msg = nil + } + + // Multiplication of big number limbs is similar to elementary school + // columnar multiplication. Instead of digits, there are 64-bit limbs. + // + // We are multiplying a 3 limbs number, h, by a 2 limbs number, r. + // + // h2 h1 h0 x + // r1 r0 = + // ---------------- + // h2r0 h1r0 h0r0 <-- individual 128-bit products + // + h2r1 h1r1 h0r1 + // ------------------------ + // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs + // ------------------------ + // m3.hi m2.hi m1.hi m0.hi <-- carry propagation + // + m3.lo m2.lo m1.lo m0.lo + // ------------------------------- + // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs + // + // The main difference from pen-and-paper multiplication is that we do + // carry propagation in a separate step, as if we wrote two digit sums + // at first (the 128-bit limbs), and then carried the tens all at once. + + h0r0 := mul64(h0, r0) + h1r0 := mul64(h1, r0) + h2r0 := mul64(h2, r0) + h0r1 := mul64(h0, r1) + h1r1 := mul64(h1, r1) + h2r1 := mul64(h2, r1) + + // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their + // top 4 bits cleared by rMask{0,1}, we know that their product is not going + // to overflow 64 bits, so we can ignore the high part of the products. + // + // This also means that the product doesn't have a fifth limb (t4). + if h2r0.hi != 0 { + panic("poly1305: unexpected overflow") + } + if h2r1.hi != 0 { + panic("poly1305: unexpected overflow") + } + + m0 := h0r0 + m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again + m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1. + m3 := h2r1 + + t0 := m0.lo + t1, c := bitsAdd64(m1.lo, m0.hi, 0) + t2, c := bitsAdd64(m2.lo, m1.hi, c) + t3, _ := bitsAdd64(m3.lo, m2.hi, c) + + // Now we have the result as 4 64-bit limbs, and we need to reduce it + // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do + // a cheap partial reduction according to the reduction identity + // + // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5 + // + // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is + // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the + // assumptions we make about h in the rest of the code. + // + // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23 + + // We split the final result at the 2¹³⁰ mark into h and cc, the carry. + // Note that the carry bits are effectively shifted left by 2, in other + // words, cc = c * 4 for the c in the reduction identity. + h0, h1, h2 = t0, t1, t2&maskLow2Bits + cc := uint128{t2 & maskNotLow2Bits, t3} + + // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c. + + h0, c = bitsAdd64(h0, cc.lo, 0) + h1, c = bitsAdd64(h1, cc.hi, c) + h2 += c + + cc = shiftRightBy2(cc) + + h0, c = bitsAdd64(h0, cc.lo, 0) + h1, c = bitsAdd64(h1, cc.hi, c) + h2 += c + + // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most + // + // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1 + } + + state.h[0], state.h[1], state.h[2] = h0, h1, h2 +} + +const ( + maskLow2Bits uint64 = 0x0000000000000003 + maskNotLow2Bits uint64 = ^maskLow2Bits +) + +// select64 returns x if v == 1 and y if v == 0, in constant time. +func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y } + +// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order. +const ( + p0 = 0xFFFFFFFFFFFFFFFB + p1 = 0xFFFFFFFFFFFFFFFF + p2 = 0x0000000000000003 +) + +// finalize completes the modular reduction of h and computes +// +// out = h + s mod 2¹²⁸ +// +func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) { + h0, h1, h2 := h[0], h[1], h[2] + + // After the partial reduction in updateGeneric, h might be more than + // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction + // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the + // result if the subtraction underflows, and t otherwise. + + hMinusP0, b := bitsSub64(h0, p0, 0) + hMinusP1, b := bitsSub64(h1, p1, b) + _, b = bitsSub64(h2, p2, b) + + // h = h if h < p else h - p + h0 = select64(b, h0, hMinusP0) + h1 = select64(b, h1, hMinusP1) + + // Finally, we compute the last Poly1305 step + // + // tag = h + s mod 2¹²⁸ + // + // by just doing a wide addition with the 128 low bits of h and discarding + // the overflow. + h0, c := bitsAdd64(h0, s[0], 0) + h1, _ = bitsAdd64(h1, s[1], c) + + binary.LittleEndian.PutUint64(out[0:8], h0) + binary.LittleEndian.PutUint64(out[8:16], h1) } |