summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/poly1305/sum_generic.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/poly1305/sum_generic.go')
-rw-r--r--vendor/golang.org/x/crypto/poly1305/sum_generic.go391
1 files changed, 263 insertions, 128 deletions
diff --git a/vendor/golang.org/x/crypto/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/poly1305/sum_generic.go
index bab76ef0..1187eab7 100644
--- a/vendor/golang.org/x/crypto/poly1305/sum_generic.go
+++ b/vendor/golang.org/x/crypto/poly1305/sum_generic.go
@@ -2,18 +2,29 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
+// This file provides the generic implementation of Sum and MAC. Other files
+// might provide optimized assembly implementations of some of this code.
+
package poly1305
import "encoding/binary"
-const (
- msgBlock = uint32(1 << 24)
- finalBlock = uint32(0)
-)
+// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
+// for a 64 bytes message is approximately
+//
+// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5
+//
+// for some secret r and s. It can be computed sequentially like
+//
+// for len(msg) > 0:
+// h += read(msg, 16)
+// h *= r
+// h %= 2¹³⁰ - 5
+// return h + s
+//
+// All the complexity is about doing performant constant-time math on numbers
+// larger than any available numeric type.
-// sumGeneric generates an authenticator for msg using a one-time key and
-// puts the 16-byte result into out. This is the generic implementation of
-// Sum and should be called if no assembly implementation is available.
func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
h := newMACGeneric(key)
h.Write(msg)
@@ -21,152 +32,276 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
}
func newMACGeneric(key *[32]byte) (h macGeneric) {
- h.r[0] = binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff
- h.r[1] = (binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03
- h.r[2] = (binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff
- h.r[3] = (binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff
- h.r[4] = (binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff
-
- h.s[0] = binary.LittleEndian.Uint32(key[16:])
- h.s[1] = binary.LittleEndian.Uint32(key[20:])
- h.s[2] = binary.LittleEndian.Uint32(key[24:])
- h.s[3] = binary.LittleEndian.Uint32(key[28:])
+ initialize(key, &h.r, &h.s)
return
}
+// macState holds numbers in saturated 64-bit little-endian limbs. That is,
+// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
+type macState struct {
+ // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
+ // can grow larger during and after rounds.
+ h [3]uint64
+ // r and s are the private key components.
+ r [2]uint64
+ s [2]uint64
+}
+
type macGeneric struct {
- h, r [5]uint32
- s [4]uint32
+ macState
buffer [TagSize]byte
offset int
}
-func (h *macGeneric) Write(p []byte) (n int, err error) {
- n = len(p)
+// Write splits the incoming message into TagSize chunks, and passes them to
+// update. It buffers incomplete chunks.
+func (h *macGeneric) Write(p []byte) (int, error) {
+ nn := len(p)
if h.offset > 0 {
- remaining := TagSize - h.offset
- if n < remaining {
- h.offset += copy(h.buffer[h.offset:], p)
- return n, nil
+ n := copy(h.buffer[h.offset:], p)
+ if h.offset+n < TagSize {
+ h.offset += n
+ return nn, nil
}
- copy(h.buffer[h.offset:], p[:remaining])
- p = p[remaining:]
+ p = p[n:]
h.offset = 0
- updateGeneric(h.buffer[:], msgBlock, &(h.h), &(h.r))
+ updateGeneric(&h.macState, h.buffer[:])
}
- if nn := len(p) - (len(p) % TagSize); nn > 0 {
- updateGeneric(p, msgBlock, &(h.h), &(h.r))
- p = p[nn:]
+ if n := len(p) - (len(p) % TagSize); n > 0 {
+ updateGeneric(&h.macState, p[:n])
+ p = p[n:]
}
if len(p) > 0 {
h.offset += copy(h.buffer[h.offset:], p)
}
- return n, nil
+ return nn, nil
}
-func (h *macGeneric) Sum(out *[16]byte) {
- H, R := h.h, h.r
+// Sum flushes the last incomplete chunk from the buffer, if any, and generates
+// the MAC output. It does not modify its state, in order to allow for multiple
+// calls to Sum, even if no Write is allowed after Sum.
+func (h *macGeneric) Sum(out *[TagSize]byte) {
+ state := h.macState
if h.offset > 0 {
- var buffer [TagSize]byte
- copy(buffer[:], h.buffer[:h.offset])
- buffer[h.offset] = 1 // invariant: h.offset < TagSize
- updateGeneric(buffer[:], finalBlock, &H, &R)
+ updateGeneric(&state, h.buffer[:h.offset])
}
- finalizeGeneric(out, &H, &(h.s))
+ finalize(out, &state.h, &state.s)
+}
+
+// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
+// clears some bits of the secret coefficient to make it possible to implement
+// multiplication more efficiently.
+const (
+ rMask0 = 0x0FFFFFFC0FFFFFFF
+ rMask1 = 0x0FFFFFFC0FFFFFFC
+)
+
+func initialize(key *[32]byte, r, s *[2]uint64) {
+ r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
+ r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
+ s[0] = binary.LittleEndian.Uint64(key[16:24])
+ s[1] = binary.LittleEndian.Uint64(key[24:32])
+}
+
+// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
+// bits.Mul64 and bits.Add64 intrinsics.
+type uint128 struct {
+ lo, hi uint64
+}
+
+func mul64(a, b uint64) uint128 {
+ hi, lo := bitsMul64(a, b)
+ return uint128{lo, hi}
}
-func updateGeneric(msg []byte, flag uint32, h, r *[5]uint32) {
- h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
- r0, r1, r2, r3, r4 := uint64(r[0]), uint64(r[1]), uint64(r[2]), uint64(r[3]), uint64(r[4])
- R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5
-
- for len(msg) >= TagSize {
- // h += msg
- h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff
- h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff
- h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff
- h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff
- h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | flag
-
- // h *= r
- d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
- d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
- d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
- d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
- d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
-
- // h %= p
- h0 = uint32(d0) & 0x3ffffff
- h1 = uint32(d1) & 0x3ffffff
- h2 = uint32(d2) & 0x3ffffff
- h3 = uint32(d3) & 0x3ffffff
- h4 = uint32(d4) & 0x3ffffff
-
- h0 += uint32(d4>>26) * 5
- h1 += h0 >> 26
- h0 = h0 & 0x3ffffff
-
- msg = msg[TagSize:]
+func add128(a, b uint128) uint128 {
+ lo, c := bitsAdd64(a.lo, b.lo, 0)
+ hi, c := bitsAdd64(a.hi, b.hi, c)
+ if c != 0 {
+ panic("poly1305: unexpected overflow")
}
+ return uint128{lo, hi}
+}
- h[0], h[1], h[2], h[3], h[4] = h0, h1, h2, h3, h4
+func shiftRightBy2(a uint128) uint128 {
+ a.lo = a.lo>>2 | (a.hi&3)<<62
+ a.hi = a.hi >> 2
+ return a
}
-func finalizeGeneric(out *[TagSize]byte, h *[5]uint32, s *[4]uint32) {
- h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
-
- // h %= p reduction
- h2 += h1 >> 26
- h1 &= 0x3ffffff
- h3 += h2 >> 26
- h2 &= 0x3ffffff
- h4 += h3 >> 26
- h3 &= 0x3ffffff
- h0 += 5 * (h4 >> 26)
- h4 &= 0x3ffffff
- h1 += h0 >> 26
- h0 &= 0x3ffffff
-
- // h - p
- t0 := h0 + 5
- t1 := h1 + (t0 >> 26)
- t2 := h2 + (t1 >> 26)
- t3 := h3 + (t2 >> 26)
- t4 := h4 + (t3 >> 26) - (1 << 26)
- t0 &= 0x3ffffff
- t1 &= 0x3ffffff
- t2 &= 0x3ffffff
- t3 &= 0x3ffffff
-
- // select h if h < p else h - p
- t_mask := (t4 >> 31) - 1
- h_mask := ^t_mask
- h0 = (h0 & h_mask) | (t0 & t_mask)
- h1 = (h1 & h_mask) | (t1 & t_mask)
- h2 = (h2 & h_mask) | (t2 & t_mask)
- h3 = (h3 & h_mask) | (t3 & t_mask)
- h4 = (h4 & h_mask) | (t4 & t_mask)
-
- // h %= 2^128
- h0 |= h1 << 26
- h1 = ((h1 >> 6) | (h2 << 20))
- h2 = ((h2 >> 12) | (h3 << 14))
- h3 = ((h3 >> 18) | (h4 << 8))
-
- // s: the s part of the key
- // tag = (h + s) % (2^128)
- t := uint64(h0) + uint64(s[0])
- h0 = uint32(t)
- t = uint64(h1) + uint64(s[1]) + (t >> 32)
- h1 = uint32(t)
- t = uint64(h2) + uint64(s[2]) + (t >> 32)
- h2 = uint32(t)
- t = uint64(h3) + uint64(s[3]) + (t >> 32)
- h3 = uint32(t)
-
- binary.LittleEndian.PutUint32(out[0:], h0)
- binary.LittleEndian.PutUint32(out[4:], h1)
- binary.LittleEndian.PutUint32(out[8:], h2)
- binary.LittleEndian.PutUint32(out[12:], h3)
+// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
+// 128 bits of message, it computes
+//
+// h₊ = (h + m) * r mod 2¹³⁰ - 5
+//
+// If the msg length is not a multiple of TagSize, it assumes the last
+// incomplete chunk is the final one.
+func updateGeneric(state *macState, msg []byte) {
+ h0, h1, h2 := state.h[0], state.h[1], state.h[2]
+ r0, r1 := state.r[0], state.r[1]
+
+ for len(msg) > 0 {
+ var c uint64
+
+ // For the first step, h + m, we use a chain of bits.Add64 intrinsics.
+ // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
+ // reduced at the end of the multiplication below.
+ //
+ // The spec requires us to set a bit just above the message size, not to
+ // hide leading zeroes. For full chunks, that's 1 << 128, so we can just
+ // add 1 to the most significant (2¹²⁸) limb, h2.
+ if len(msg) >= TagSize {
+ h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
+ h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
+ h2 += c + 1
+
+ msg = msg[TagSize:]
+ } else {
+ var buf [TagSize]byte
+ copy(buf[:], msg)
+ buf[len(msg)] = 1
+
+ h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
+ h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
+ h2 += c
+
+ msg = nil
+ }
+
+ // Multiplication of big number limbs is similar to elementary school
+ // columnar multiplication. Instead of digits, there are 64-bit limbs.
+ //
+ // We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
+ //
+ // h2 h1 h0 x
+ // r1 r0 =
+ // ----------------
+ // h2r0 h1r0 h0r0 <-- individual 128-bit products
+ // + h2r1 h1r1 h0r1
+ // ------------------------
+ // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs
+ // ------------------------
+ // m3.hi m2.hi m1.hi m0.hi <-- carry propagation
+ // + m3.lo m2.lo m1.lo m0.lo
+ // -------------------------------
+ // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs
+ //
+ // The main difference from pen-and-paper multiplication is that we do
+ // carry propagation in a separate step, as if we wrote two digit sums
+ // at first (the 128-bit limbs), and then carried the tens all at once.
+
+ h0r0 := mul64(h0, r0)
+ h1r0 := mul64(h1, r0)
+ h2r0 := mul64(h2, r0)
+ h0r1 := mul64(h0, r1)
+ h1r1 := mul64(h1, r1)
+ h2r1 := mul64(h2, r1)
+
+ // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
+ // top 4 bits cleared by rMask{0,1}, we know that their product is not going
+ // to overflow 64 bits, so we can ignore the high part of the products.
+ //
+ // This also means that the product doesn't have a fifth limb (t4).
+ if h2r0.hi != 0 {
+ panic("poly1305: unexpected overflow")
+ }
+ if h2r1.hi != 0 {
+ panic("poly1305: unexpected overflow")
+ }
+
+ m0 := h0r0
+ m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
+ m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
+ m3 := h2r1
+
+ t0 := m0.lo
+ t1, c := bitsAdd64(m1.lo, m0.hi, 0)
+ t2, c := bitsAdd64(m2.lo, m1.hi, c)
+ t3, _ := bitsAdd64(m3.lo, m2.hi, c)
+
+ // Now we have the result as 4 64-bit limbs, and we need to reduce it
+ // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
+ // a cheap partial reduction according to the reduction identity
+ //
+ // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5
+ //
+ // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
+ // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
+ // assumptions we make about h in the rest of the code.
+ //
+ // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
+
+ // We split the final result at the 2¹³⁰ mark into h and cc, the carry.
+ // Note that the carry bits are effectively shifted left by 2, in other
+ // words, cc = c * 4 for the c in the reduction identity.
+ h0, h1, h2 = t0, t1, t2&maskLow2Bits
+ cc := uint128{t2 & maskNotLow2Bits, t3}
+
+ // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
+
+ h0, c = bitsAdd64(h0, cc.lo, 0)
+ h1, c = bitsAdd64(h1, cc.hi, c)
+ h2 += c
+
+ cc = shiftRightBy2(cc)
+
+ h0, c = bitsAdd64(h0, cc.lo, 0)
+ h1, c = bitsAdd64(h1, cc.hi, c)
+ h2 += c
+
+ // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
+ //
+ // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
+ }
+
+ state.h[0], state.h[1], state.h[2] = h0, h1, h2
+}
+
+const (
+ maskLow2Bits uint64 = 0x0000000000000003
+ maskNotLow2Bits uint64 = ^maskLow2Bits
+)
+
+// select64 returns x if v == 1 and y if v == 0, in constant time.
+func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
+
+// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
+const (
+ p0 = 0xFFFFFFFFFFFFFFFB
+ p1 = 0xFFFFFFFFFFFFFFFF
+ p2 = 0x0000000000000003
+)
+
+// finalize completes the modular reduction of h and computes
+//
+// out = h + s mod 2¹²⁸
+//
+func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
+ h0, h1, h2 := h[0], h[1], h[2]
+
+ // After the partial reduction in updateGeneric, h might be more than
+ // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
+ // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
+ // result if the subtraction underflows, and t otherwise.
+
+ hMinusP0, b := bitsSub64(h0, p0, 0)
+ hMinusP1, b := bitsSub64(h1, p1, b)
+ _, b = bitsSub64(h2, p2, b)
+
+ // h = h if h < p else h - p
+ h0 = select64(b, h0, hMinusP0)
+ h1 = select64(b, h1, hMinusP1)
+
+ // Finally, we compute the last Poly1305 step
+ //
+ // tag = h + s mod 2¹²⁸
+ //
+ // by just doing a wide addition with the 128 low bits of h and discarding
+ // the overflow.
+ h0, c := bitsAdd64(h0, s[0], 0)
+ h1, _ = bitsAdd64(h1, s[1], c)
+
+ binary.LittleEndian.PutUint64(out[0:8], h0)
+ binary.LittleEndian.PutUint64(out[8:16], h1)
}