diff options
author | Wim <wim@42.be> | 2017-03-23 23:28:55 +0100 |
---|---|---|
committer | Wim <wim@42.be> | 2017-03-23 23:28:55 +0100 |
commit | 2f68519b3c6b5a70028882c99afeb76f291b7725 (patch) | |
tree | 2555d0b8b81491f136a176a58e2618a25edc8edc /vendor/golang.org/x/arch/x86/x86asm/decode.go | |
parent | efe641f202653dfd3bc7bde221188e098db3def7 (diff) | |
download | matterbridge-msglm-2f68519b3c6b5a70028882c99afeb76f291b7725.tar.gz matterbridge-msglm-2f68519b3c6b5a70028882c99afeb76f291b7725.tar.bz2 matterbridge-msglm-2f68519b3c6b5a70028882c99afeb76f291b7725.zip |
Add gops agentv0.10.2-dev
Diffstat (limited to 'vendor/golang.org/x/arch/x86/x86asm/decode.go')
-rw-r--r-- | vendor/golang.org/x/arch/x86/x86asm/decode.go | 1724 |
1 files changed, 1724 insertions, 0 deletions
diff --git a/vendor/golang.org/x/arch/x86/x86asm/decode.go b/vendor/golang.org/x/arch/x86/x86asm/decode.go new file mode 100644 index 00000000..148870b7 --- /dev/null +++ b/vendor/golang.org/x/arch/x86/x86asm/decode.go @@ -0,0 +1,1724 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Table-driven decoding of x86 instructions. + +package x86asm + +import ( + "encoding/binary" + "errors" + "fmt" + "runtime" +) + +// Set trace to true to cause the decoder to print the PC sequence +// of the executed instruction codes. This is typically only useful +// when you are running a test of a single input case. +const trace = false + +// A decodeOp is a single instruction in the decoder bytecode program. +// +// The decodeOps correspond to consuming and conditionally branching +// on input bytes, consuming additional fields, and then interpreting +// consumed data as instruction arguments. The names of the xRead and xArg +// operations are taken from the Intel manual conventions, for example +// Volume 2, Section 3.1.1, page 487 of +// http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf +// +// The actual decoding program is generated by ../x86map. +// +// TODO(rsc): We may be able to merge various of the memory operands +// since we don't care about, say, the distinction between m80dec and m80bcd. +// Similarly, mm and mm1 have identical meaning, as do xmm and xmm1. + +type decodeOp uint16 + +const ( + xFail decodeOp = iota // invalid instruction (return) + xMatch // completed match + xJump // jump to pc + + xCondByte // switch on instruction byte value + xCondSlashR // read and switch on instruction /r value + xCondPrefix // switch on presence of instruction prefix + xCondIs64 // switch on 64-bit processor mode + xCondDataSize // switch on operand size + xCondAddrSize // switch on address size + xCondIsMem // switch on memory vs register argument + + xSetOp // set instruction opcode + + xReadSlashR // read /r + xReadIb // read ib + xReadIw // read iw + xReadId // read id + xReadIo // read io + xReadCb // read cb + xReadCw // read cw + xReadCd // read cd + xReadCp // read cp + xReadCm // read cm + + xArg1 // arg 1 + xArg3 // arg 3 + xArgAL // arg AL + xArgAX // arg AX + xArgCL // arg CL + xArgCR0dashCR7 // arg CR0-CR7 + xArgCS // arg CS + xArgDR0dashDR7 // arg DR0-DR7 + xArgDS // arg DS + xArgDX // arg DX + xArgEAX // arg EAX + xArgEDX // arg EDX + xArgES // arg ES + xArgFS // arg FS + xArgGS // arg GS + xArgImm16 // arg imm16 + xArgImm32 // arg imm32 + xArgImm64 // arg imm64 + xArgImm8 // arg imm8 + xArgImm8u // arg imm8 but record as unsigned + xArgImm16u // arg imm8 but record as unsigned + xArgM // arg m + xArgM128 // arg m128 + xArgM256 // arg m256 + xArgM1428byte // arg m14/28byte + xArgM16 // arg m16 + xArgM16and16 // arg m16&16 + xArgM16and32 // arg m16&32 + xArgM16and64 // arg m16&64 + xArgM16colon16 // arg m16:16 + xArgM16colon32 // arg m16:32 + xArgM16colon64 // arg m16:64 + xArgM16int // arg m16int + xArgM2byte // arg m2byte + xArgM32 // arg m32 + xArgM32and32 // arg m32&32 + xArgM32fp // arg m32fp + xArgM32int // arg m32int + xArgM512byte // arg m512byte + xArgM64 // arg m64 + xArgM64fp // arg m64fp + xArgM64int // arg m64int + xArgM8 // arg m8 + xArgM80bcd // arg m80bcd + xArgM80dec // arg m80dec + xArgM80fp // arg m80fp + xArgM94108byte // arg m94/108byte + xArgMm // arg mm + xArgMm1 // arg mm1 + xArgMm2 // arg mm2 + xArgMm2M64 // arg mm2/m64 + xArgMmM32 // arg mm/m32 + xArgMmM64 // arg mm/m64 + xArgMem // arg mem + xArgMoffs16 // arg moffs16 + xArgMoffs32 // arg moffs32 + xArgMoffs64 // arg moffs64 + xArgMoffs8 // arg moffs8 + xArgPtr16colon16 // arg ptr16:16 + xArgPtr16colon32 // arg ptr16:32 + xArgR16 // arg r16 + xArgR16op // arg r16 with +rw in opcode + xArgR32 // arg r32 + xArgR32M16 // arg r32/m16 + xArgR32M8 // arg r32/m8 + xArgR32op // arg r32 with +rd in opcode + xArgR64 // arg r64 + xArgR64M16 // arg r64/m16 + xArgR64op // arg r64 with +rd in opcode + xArgR8 // arg r8 + xArgR8op // arg r8 with +rb in opcode + xArgRAX // arg RAX + xArgRDX // arg RDX + xArgRM // arg r/m + xArgRM16 // arg r/m16 + xArgRM32 // arg r/m32 + xArgRM64 // arg r/m64 + xArgRM8 // arg r/m8 + xArgReg // arg reg + xArgRegM16 // arg reg/m16 + xArgRegM32 // arg reg/m32 + xArgRegM8 // arg reg/m8 + xArgRel16 // arg rel16 + xArgRel32 // arg rel32 + xArgRel8 // arg rel8 + xArgSS // arg SS + xArgST // arg ST, aka ST(0) + xArgSTi // arg ST(i) with +i in opcode + xArgSreg // arg Sreg + xArgTR0dashTR7 // arg TR0-TR7 + xArgXmm // arg xmm + xArgXMM0 // arg <XMM0> + xArgXmm1 // arg xmm1 + xArgXmm2 // arg xmm2 + xArgXmm2M128 // arg xmm2/m128 + xArgYmm2M256 // arg ymm2/m256 + xArgXmm2M16 // arg xmm2/m16 + xArgXmm2M32 // arg xmm2/m32 + xArgXmm2M64 // arg xmm2/m64 + xArgXmmM128 // arg xmm/m128 + xArgXmmM32 // arg xmm/m32 + xArgXmmM64 // arg xmm/m64 + xArgYmm1 // arg ymm1 + xArgRmf16 // arg r/m16 but force mod=3 + xArgRmf32 // arg r/m32 but force mod=3 + xArgRmf64 // arg r/m64 but force mod=3 +) + +// instPrefix returns an Inst describing just one prefix byte. +// It is only used if there is a prefix followed by an unintelligible +// or invalid instruction byte sequence. +func instPrefix(b byte, mode int) (Inst, error) { + // When tracing it is useful to see what called instPrefix to report an error. + if trace { + _, file, line, _ := runtime.Caller(1) + fmt.Printf("%s:%d\n", file, line) + } + p := Prefix(b) + switch p { + case PrefixDataSize: + if mode == 16 { + p = PrefixData32 + } else { + p = PrefixData16 + } + case PrefixAddrSize: + if mode == 32 { + p = PrefixAddr16 + } else { + p = PrefixAddr32 + } + } + // Note: using composite literal with Prefix key confuses 'bundle' tool. + inst := Inst{Len: 1} + inst.Prefix = Prefixes{p} + return inst, nil +} + +// truncated reports a truncated instruction. +// For now we use instPrefix but perhaps later we will return +// a specific error here. +func truncated(src []byte, mode int) (Inst, error) { + // return Inst{}, len(src), ErrTruncated + return instPrefix(src[0], mode) // too long +} + +// These are the errors returned by Decode. +var ( + ErrInvalidMode = errors.New("invalid x86 mode in Decode") + ErrTruncated = errors.New("truncated instruction") + ErrUnrecognized = errors.New("unrecognized instruction") +) + +// decoderCover records coverage information for which parts +// of the byte code have been executed. +// TODO(rsc): This is for testing. Only use this if a flag is given. +var decoderCover []bool + +// Decode decodes the leading bytes in src as a single instruction. +// The mode arguments specifies the assumed processor mode: +// 16, 32, or 64 for 16-, 32-, and 64-bit execution modes. +func Decode(src []byte, mode int) (inst Inst, err error) { + return decode1(src, mode, false) +} + +// decode1 is the implementation of Decode but takes an extra +// gnuCompat flag to cause it to change its behavior to mimic +// bugs (or at least unique features) of GNU libopcodes as used +// by objdump. We don't believe that logic is the right thing to do +// in general, but when testing against libopcodes it simplifies the +// comparison if we adjust a few small pieces of logic. +// The affected logic is in the conditional branch for "mandatory" prefixes, +// case xCondPrefix. +func decode1(src []byte, mode int, gnuCompat bool) (Inst, error) { + switch mode { + case 16, 32, 64: + // ok + // TODO(rsc): 64-bit mode not tested, probably not working. + default: + return Inst{}, ErrInvalidMode + } + + // Maximum instruction size is 15 bytes. + // If we need to read more, return 'truncated instruction. + if len(src) > 15 { + src = src[:15] + } + + var ( + // prefix decoding information + pos = 0 // position reading src + nprefix = 0 // number of prefixes + lockIndex = -1 // index of LOCK prefix in src and inst.Prefix + repIndex = -1 // index of REP/REPN prefix in src and inst.Prefix + segIndex = -1 // index of Group 2 prefix in src and inst.Prefix + dataSizeIndex = -1 // index of Group 3 prefix in src and inst.Prefix + addrSizeIndex = -1 // index of Group 4 prefix in src and inst.Prefix + rex Prefix // rex byte if present (or 0) + rexUsed Prefix // bits used in rex byte + rexIndex = -1 // index of rex byte + vex Prefix // use vex encoding + vexIndex = -1 // index of vex prefix + + addrMode = mode // address mode (width in bits) + dataMode = mode // operand mode (width in bits) + + // decoded ModR/M fields + haveModrm bool + modrm int + mod int + regop int + rm int + + // if ModR/M is memory reference, Mem form + mem Mem + haveMem bool + + // decoded SIB fields + haveSIB bool + sib int + scale int + index int + base int + displen int + dispoff int + + // decoded immediate values + imm int64 + imm8 int8 + immc int64 + immcpos int + + // output + opshift int + inst Inst + narg int // number of arguments written to inst + ) + + if mode == 64 { + dataMode = 32 + } + + // Prefixes are certainly the most complex and underspecified part of + // decoding x86 instructions. Although the manuals say things like + // up to four prefixes, one from each group, nearly everyone seems to + // agree that in practice as many prefixes as possible, including multiple + // from a particular group or repetitions of a given prefix, can be used on + // an instruction, provided the total instruction length including prefixes + // does not exceed the agreed-upon maximum of 15 bytes. + // Everyone also agrees that if one of these prefixes is the LOCK prefix + // and the instruction is not one of the instructions that can be used with + // the LOCK prefix or if the destination is not a memory operand, + // then the instruction is invalid and produces the #UD exception. + // However, that is the end of any semblance of agreement. + // + // What happens if prefixes are given that conflict with other prefixes? + // For example, the memory segment overrides CS, DS, ES, FS, GS, SS + // conflict with each other: only one segment can be in effect. + // Disassemblers seem to agree that later prefixes take priority over + // earlier ones. I have not taken the time to write assembly programs + // to check to see if the hardware agrees. + // + // What happens if prefixes are given that have no meaning for the + // specific instruction to which they are attached? It depends. + // If they really have no meaning, they are ignored. However, a future + // processor may assign a different meaning. As a disassembler, we + // don't really know whether we're seeing a meaningless prefix or one + // whose meaning we simply haven't been told yet. + // + // Combining the two questions, what happens when conflicting + // extension prefixes are given? No one seems to know for sure. + // For example, MOVQ is 66 0F D6 /r, MOVDQ2Q is F2 0F D6 /r, + // and MOVQ2DQ is F3 0F D6 /r. What is '66 F2 F3 0F D6 /r'? + // Which prefix wins? See the xCondPrefix prefix for more. + // + // Writing assembly test cases to divine which interpretation the + // CPU uses might clarify the situation, but more likely it would + // make the situation even less clear. + + // Read non-REX prefixes. +ReadPrefixes: + for ; pos < len(src); pos++ { + p := Prefix(src[pos]) + switch p { + default: + nprefix = pos + break ReadPrefixes + + // Group 1 - lock and repeat prefixes + // According to Intel, there should only be one from this set, + // but according to AMD both can be present. + case 0xF0: + if lockIndex >= 0 { + inst.Prefix[lockIndex] |= PrefixIgnored + } + lockIndex = pos + case 0xF2, 0xF3: + if repIndex >= 0 { + inst.Prefix[repIndex] |= PrefixIgnored + } + repIndex = pos + + // Group 2 - segment override / branch hints + case 0x26, 0x2E, 0x36, 0x3E: + if mode == 64 { + p |= PrefixIgnored + break + } + fallthrough + case 0x64, 0x65: + if segIndex >= 0 { + inst.Prefix[segIndex] |= PrefixIgnored + } + segIndex = pos + + // Group 3 - operand size override + case 0x66: + if mode == 16 { + dataMode = 32 + p = PrefixData32 + } else { + dataMode = 16 + p = PrefixData16 + } + if dataSizeIndex >= 0 { + inst.Prefix[dataSizeIndex] |= PrefixIgnored + } + dataSizeIndex = pos + + // Group 4 - address size override + case 0x67: + if mode == 32 { + addrMode = 16 + p = PrefixAddr16 + } else { + addrMode = 32 + p = PrefixAddr32 + } + if addrSizeIndex >= 0 { + inst.Prefix[addrSizeIndex] |= PrefixIgnored + } + addrSizeIndex = pos + + //Group 5 - Vex encoding + case 0xC5: + if pos == 0 && (mode == 64 || (mode == 32 && pos+1 < len(src) && src[pos+1]&0xc0 == 0xc0)) { + vex = p + vexIndex = pos + inst.Prefix[pos] = p + inst.Prefix[pos+1] = Prefix(src[pos+1]) + pos += 1 + continue + } else { + nprefix = pos + break ReadPrefixes + } + case 0xC4: + if pos == 0 && (mode == 64 || (mode == 32 && pos+2 < len(src) && src[pos+1]&0xc0 == 0xc0)) { + vex = p + vexIndex = pos + inst.Prefix[pos] = p + inst.Prefix[pos+1] = Prefix(src[pos+1]) + inst.Prefix[pos+2] = Prefix(src[pos+2]) + pos += 2 + continue + } else { + nprefix = pos + break ReadPrefixes + } + } + + if pos >= len(inst.Prefix) { + return instPrefix(src[0], mode) // too long + } + + inst.Prefix[pos] = p + } + + // Read REX prefix. + if pos < len(src) && mode == 64 && Prefix(src[pos]).IsREX() && vex == 0 { + rex = Prefix(src[pos]) + rexIndex = pos + if pos >= len(inst.Prefix) { + return instPrefix(src[0], mode) // too long + } + inst.Prefix[pos] = rex + pos++ + if rex&PrefixREXW != 0 { + dataMode = 64 + if dataSizeIndex >= 0 { + inst.Prefix[dataSizeIndex] |= PrefixIgnored + } + } + } + + // Decode instruction stream, interpreting decoding instructions. + // opshift gives the shift to use when saving the next + // opcode byte into inst.Opcode. + opshift = 24 + if decoderCover == nil { + decoderCover = make([]bool, len(decoder)) + } + + // Decode loop, executing decoder program. + var oldPC, prevPC int +Decode: + for pc := 1; ; { // TODO uint + oldPC = prevPC + prevPC = pc + if trace { + println("run", pc) + } + x := decoder[pc] + decoderCover[pc] = true + pc++ + + // Read and decode ModR/M if needed by opcode. + switch decodeOp(x) { + case xCondSlashR, xReadSlashR: + if haveModrm { + return Inst{Len: pos}, errInternal + } + haveModrm = true + if pos >= len(src) { + return truncated(src, mode) + } + modrm = int(src[pos]) + pos++ + if opshift >= 0 { + inst.Opcode |= uint32(modrm) << uint(opshift) + opshift -= 8 + } + mod = modrm >> 6 + regop = (modrm >> 3) & 07 + rm = modrm & 07 + if rex&PrefixREXR != 0 { + rexUsed |= PrefixREXR + regop |= 8 + } + if addrMode == 16 { + // 16-bit modrm form + if mod != 3 { + haveMem = true + mem = addr16[rm] + if rm == 6 && mod == 0 { + mem.Base = 0 + } + + // Consume disp16 if present. + if mod == 0 && rm == 6 || mod == 2 { + if pos+2 > len(src) { + return truncated(src, mode) + } + mem.Disp = int64(binary.LittleEndian.Uint16(src[pos:])) + pos += 2 + } + + // Consume disp8 if present. + if mod == 1 { + if pos >= len(src) { + return truncated(src, mode) + } + mem.Disp = int64(int8(src[pos])) + pos++ + } + } + } else { + haveMem = mod != 3 + + // 32-bit or 64-bit form + // Consume SIB encoding if present. + if rm == 4 && mod != 3 { + haveSIB = true + if pos >= len(src) { + return truncated(src, mode) + } + sib = int(src[pos]) + pos++ + if opshift >= 0 { + inst.Opcode |= uint32(sib) << uint(opshift) + opshift -= 8 + } + scale = sib >> 6 + index = (sib >> 3) & 07 + base = sib & 07 + if rex&PrefixREXB != 0 || vex == 0xC4 && inst.Prefix[vexIndex+1]&0x20 == 0 { + rexUsed |= PrefixREXB + base |= 8 + } + if rex&PrefixREXX != 0 || vex == 0xC4 && inst.Prefix[vexIndex+1]&0x40 == 0 { + rexUsed |= PrefixREXX + index |= 8 + } + + mem.Scale = 1 << uint(scale) + if index == 4 { + // no mem.Index + } else { + mem.Index = baseRegForBits(addrMode) + Reg(index) + } + if base&7 == 5 && mod == 0 { + // no mem.Base + } else { + mem.Base = baseRegForBits(addrMode) + Reg(base) + } + } else { + if rex&PrefixREXB != 0 { + rexUsed |= PrefixREXB + rm |= 8 + } + if mod == 0 && rm&7 == 5 || rm&7 == 4 { + // base omitted + } else if mod != 3 { + mem.Base = baseRegForBits(addrMode) + Reg(rm) + } + } + + // Consume disp32 if present. + if mod == 0 && (rm&7 == 5 || haveSIB && base&7 == 5) || mod == 2 { + if pos+4 > len(src) { + return truncated(src, mode) + } + dispoff = pos + displen = 4 + mem.Disp = int64(binary.LittleEndian.Uint32(src[pos:])) + pos += 4 + } + + // Consume disp8 if present. + if mod == 1 { + if pos >= len(src) { + return truncated(src, mode) + } + dispoff = pos + displen = 1 + mem.Disp = int64(int8(src[pos])) + pos++ + } + + // In 64-bit, mod=0 rm=5 is PC-relative instead of just disp. + // See Vol 2A. Table 2-7. + if mode == 64 && mod == 0 && rm&7 == 5 { + if addrMode == 32 { + mem.Base = EIP + } else { + mem.Base = RIP + } + } + } + + if segIndex >= 0 { + mem.Segment = prefixToSegment(inst.Prefix[segIndex]) + } + } + + // Execute single opcode. + switch decodeOp(x) { + default: + println("bad op", x, "at", pc-1, "from", oldPC) + return Inst{Len: pos}, errInternal + + case xFail: + inst.Op = 0 + break Decode + + case xMatch: + break Decode + + case xJump: + pc = int(decoder[pc]) + + // Conditional branches. + + case xCondByte: + if pos >= len(src) { + return truncated(src, mode) + } + b := src[pos] + n := int(decoder[pc]) + pc++ + for i := 0; i < n; i++ { + xb, xpc := decoder[pc], int(decoder[pc+1]) + pc += 2 + if b == byte(xb) { + pc = xpc + pos++ + if opshift >= 0 { + inst.Opcode |= uint32(b) << uint(opshift) + opshift -= 8 + } + continue Decode + } + } + // xCondByte is the only conditional with a fall through, + // so that it can be used to pick off special cases before + // an xCondSlash. If the fallthrough instruction is xFail, + // advance the position so that the decoded instruction + // size includes the byte we just compared against. + if decodeOp(decoder[pc]) == xJump { + pc = int(decoder[pc+1]) + } + if decodeOp(decoder[pc]) == xFail { + pos++ + } + + case xCondIs64: + if mode == 64 { + pc = int(decoder[pc+1]) + } else { + pc = int(decoder[pc]) + } + + case xCondIsMem: + mem := haveMem + if !haveModrm { + if pos >= len(src) { + return instPrefix(src[0], mode) // too long + } + mem = src[pos]>>6 != 3 + } + if mem { + pc = int(decoder[pc+1]) + } else { + pc = int(decoder[pc]) + } + + case xCondDataSize: + switch dataMode { + case 16: + if dataSizeIndex >= 0 { + inst.Prefix[dataSizeIndex] |= PrefixImplicit + } + pc = int(decoder[pc]) + case 32: + if dataSizeIndex >= 0 { + inst.Prefix[dataSizeIndex] |= PrefixImplicit + } + pc = int(decoder[pc+1]) + case 64: + rexUsed |= PrefixREXW + pc = int(decoder[pc+2]) + } + + case xCondAddrSize: + switch addrMode { + case 16: + if addrSizeIndex >= 0 { + inst.Prefix[addrSizeIndex] |= PrefixImplicit + } + pc = int(decoder[pc]) + case 32: + if addrSizeIndex >= 0 { + inst.Prefix[addrSizeIndex] |= PrefixImplicit + } + pc = int(decoder[pc+1]) + case 64: + pc = int(decoder[pc+2]) + } + + case xCondPrefix: + // Conditional branch based on presence or absence of prefixes. + // The conflict cases here are completely undocumented and + // differ significantly between GNU libopcodes and Intel xed. + // I have not written assembly code to divine what various CPUs + // do, but it wouldn't surprise me if they are not consistent either. + // + // The basic idea is to switch on the presence of a prefix, so that + // for example: + // + // xCondPrefix, 4 + // 0xF3, 123, + // 0xF2, 234, + // 0x66, 345, + // 0, 456 + // + // branch to 123 if the F3 prefix is present, 234 if the F2 prefix + // is present, 66 if the 345 prefix is present, and 456 otherwise. + // The prefixes are given in descending order so that the 0 will be last. + // + // It is unclear what should happen if multiple conditions are + // satisfied: what if F2 and F3 are both present, or if 66 and F2 + // are present, or if all three are present? The one chosen becomes + // part of the opcode and the others do not. Perhaps the answer + // depends on the specific opcodes in question. + // + // The only clear example is that CRC32 is F2 0F 38 F1 /r, and + // it comes in 16-bit and 32-bit forms based on the 66 prefix, + // so 66 F2 0F 38 F1 /r should be treated as F2 taking priority, + // with the 66 being only an operand size override, and probably + // F2 66 0F 38 F1 /r should be treated the same. + // Perhaps that rule is specific to the case of CRC32, since no + // 66 0F 38 F1 instruction is defined (today) (that we know of). + // However, both libopcodes and xed seem to generalize this + // example and choose F2/F3 in preference to 66, and we + // do the same. + // + // Next, what if both F2 and F3 are present? Which wins? + // The Intel xed rule, and ours, is that the one that occurs last wins. + // The GNU libopcodes rule, which we implement only in gnuCompat mode, + // is that F3 beats F2 unless F3 has no special meaning, in which + // case F3 can be a modified on an F2 special meaning. + // + // Concretely, + // 66 0F D6 /r is MOVQ + // F2 0F D6 /r is MOVDQ2Q + // F3 0F D6 /r is MOVQ2DQ. + // + // F2 66 0F D6 /r is 66 + MOVDQ2Q always. + // 66 F2 0F D6 /r is 66 + MOVDQ2Q always. + // F3 66 0F D6 /r is 66 + MOVQ2DQ always. + // 66 F3 0F D6 /r is 66 + MOVQ2DQ always. + // F2 F3 0F D6 /r is F2 + MOVQ2DQ always. + // F3 F2 0F D6 /r is F3 + MOVQ2DQ in Intel xed, but F2 + MOVQ2DQ in GNU libopcodes. + // Adding 66 anywhere in the prefix section of the + // last two cases does not change the outcome. + // + // Finally, what if there is a variant in which 66 is a mandatory + // prefix rather than an operand size override, but we know of + // no corresponding F2/F3 form, and we see both F2/F3 and 66. + // Does F2/F3 still take priority, so that the result is an unknown + // instruction, or does the 66 take priority, so that the extended + // 66 instruction should be interpreted as having a REP/REPN prefix? + // Intel xed does the former and GNU libopcodes does the latter. + // We side with Intel xed, unless we are trying to match libopcodes + // more closely during the comparison-based test suite. + // + // In 64-bit mode REX.W is another valid prefix to test for, but + // there is less ambiguity about that. When present, REX.W is + // always the first entry in the table. + n := int(decoder[pc]) + pc++ + sawF3 := false + for j := 0; j < n; j++ { + prefix := Prefix(decoder[pc+2*j]) + if prefix.IsREX() { + rexUsed |= prefix + if rex&prefix == prefix { + pc = int(decoder[pc+2*j+1]) + continue Decode + } + continue + } + ok := false + if prefix == 0 { + ok = true + } else if prefix.IsREX() { + rexUsed |= prefix + if rex&prefix == prefix { + ok = true + } + } else if prefix == 0xC5 || prefix == 0xC4 { + if vex == prefix { + ok = true + } + } else if vex != 0 && (prefix == 0x0F || prefix == 0x0F38 || prefix == 0x0F3A || + prefix == 0x66 || prefix == 0xF2 || prefix == 0xF3) { + var vexM, vexP Prefix + if vex == 0xC5 { + vexM = 1 // 2 byte vex always implies 0F + vexP = inst.Prefix[vexIndex+1] + } else { + vexM = inst.Prefix[vexIndex+1] + vexP = inst.Prefix[vexIndex+2] + } + switch prefix { + case 0x66: + ok = vexP&3 == 1 + case 0xF3: + ok = vexP&3 == 2 + case 0xF2: + ok = vexP&3 == 3 + case 0x0F: + ok = vexM&3 == 1 + case 0x0F38: + ok = vexM&3 == 2 + case 0x0F3A: + ok = vexM&3 == 3 + } + } else { + if prefix == 0xF3 { + sawF3 = true + } + switch prefix { + case PrefixLOCK: + if lockIndex >= 0 { + inst.Prefix[lockIndex] |= PrefixImplicit + ok = true + } + case PrefixREP, PrefixREPN: + if repIndex >= 0 && inst.Prefix[repIndex]&0xFF == prefix { + inst.Prefix[repIndex] |= PrefixImplicit + ok = true + } + if gnuCompat && !ok && prefix == 0xF3 && repIndex >= 0 && (j+1 >= n || decoder[pc+2*(j+1)] != 0xF2) { + // Check to see if earlier prefix F3 is present. + for i := repIndex - 1; i >= 0; i-- { + if inst.Prefix[i]&0xFF == prefix { + inst.Prefix[i] |= PrefixImplicit + ok = true + } + } + } + if gnuCompat && !ok && prefix == 0xF2 && repIndex >= 0 && !sawF3 && inst.Prefix[repIndex]&0xFF == 0xF3 { + // Check to see if earlier prefix F2 is present. + for i := repIndex - 1; i >= 0; i-- { + if inst.Prefix[i]&0xFF == prefix { + inst.Prefix[i] |= PrefixImplicit + ok = true + } + } + } + case PrefixCS, PrefixDS, PrefixES, PrefixFS, PrefixGS, PrefixSS: + if segIndex >= 0 && inst.Prefix[segIndex]&0xFF == prefix { + inst.Prefix[segIndex] |= PrefixImplicit + ok = true + } + case PrefixDataSize: + // Looking for 66 mandatory prefix. + // The F2/F3 mandatory prefixes take priority when both are present. + // If we got this far in the xCondPrefix table and an F2/F3 is present, + // it means the table didn't have any entry for that prefix. But if 66 has + // special meaning, perhaps F2/F3 have special meaning that we don't know. + // Intel xed works this way, treating the F2/F3 as inhibiting the 66. + // GNU libopcodes allows the 66 to match. We do what Intel xed does + // except in gnuCompat mode. + if repIndex >= 0 && !gnuCompat { + inst.Op = 0 + break Decode + } + if dataSizeIndex >= 0 { + inst.Prefix[dataSizeIndex] |= PrefixImplicit + ok = true + } + case PrefixAddrSize: + if addrSizeIndex >= 0 { + inst.Prefix[addrSizeIndex] |= PrefixImplicit + ok = true + } + } + } + if ok { + pc = int(decoder[pc+2*j+1]) + continue Decode + } + } + inst.Op = 0 + break Decode + + case xCondSlashR: + pc = int(decoder[pc+regop&7]) + + // Input. + + case xReadSlashR: + // done above + + case xReadIb: + if pos >= len(src) { + return truncated(src, mode) + } + imm8 = int8(src[pos]) + pos++ + + case xReadIw: + if pos+2 > len(src) { + return truncated(src, mode) + } + imm = int64(binary.LittleEndian.Uint16(src[pos:])) + pos += 2 + + case xReadId: + if pos+4 > len(src) { + return truncated(src, mode) + } + imm = int64(binary.LittleEndian.Uint32(src[pos:])) + pos += 4 + + case xReadIo: + if pos+8 > len(src) { + return truncated(src, mode) + } + imm = int64(binary.LittleEndian.Uint64(src[pos:])) + pos += 8 + + case xReadCb: + if pos >= len(src) { + return truncated(src, mode) + } + immcpos = pos + immc = int64(src[pos]) + pos++ + + case xReadCw: + if pos+2 > len(src) { + return truncated(src, mode) + } + immcpos = pos + immc = int64(binary.LittleEndian.Uint16(src[pos:])) + pos += 2 + + case xReadCm: + immcpos = pos + if addrMode == 16 { + if pos+2 > len(src) { + return truncated(src, mode) + } + immc = int64(binary.LittleEndian.Uint16(src[pos:])) + pos += 2 + } else if addrMode == 32 { + if pos+4 > len(src) { + return truncated(src, mode) + } + immc = int64(binary.LittleEndian.Uint32(src[pos:])) + pos += 4 + } else { + if pos+8 > len(src) { + return truncated(src, mode) + } + immc = int64(binary.LittleEndian.Uint64(src[pos:])) + pos += 8 + } + case xReadCd: + immcpos = pos + if pos+4 > len(src) { + return truncated(src, mode) + } + immc = int64(binary.LittleEndian.Uint32(src[pos:])) + pos += 4 + + case xReadCp: + immcpos = pos + if pos+6 > len(src) { + return truncated(src, mode) + } + w := binary.LittleEndian.Uint32(src[pos:]) + w2 := binary.LittleEndian.Uint16(src[pos+4:]) + immc = int64(w2)<<32 | int64(w) + pos += 6 + + // Output. + + case xSetOp: + inst.Op = Op(decoder[pc]) + pc++ + + case xArg1, + xArg3, + xArgAL, + xArgAX, + xArgCL, + xArgCS, + xArgDS, + xArgDX, + xArgEAX, + xArgEDX, + xArgES, + xArgFS, + xArgGS, + xArgRAX, + xArgRDX, + xArgSS, + xArgST, + xArgXMM0: + inst.Args[narg] = fixedArg[x] + narg++ + + case xArgImm8: + inst.Args[narg] = Imm(imm8) + narg++ + + case xArgImm8u: + inst.Args[narg] = Imm(uint8(imm8)) + narg++ + + case xArgImm16: + inst.Args[narg] = Imm(int16(imm)) + narg++ + + case xArgImm16u: + inst.Args[narg] = Imm(uint16(imm)) + narg++ + + case xArgImm32: + inst.Args[narg] = Imm(int32(imm)) + narg++ + + case xArgImm64: + inst.Args[narg] = Imm(imm) + narg++ + + case xArgM, + xArgM128, + xArgM256, + xArgM1428byte, + xArgM16, + xArgM16and16, + xArgM16and32, + xArgM16and64, + xArgM16colon16, + xArgM16colon32, + xArgM16colon64, + xArgM16int, + xArgM2byte, + xArgM32, + xArgM32and32, + xArgM32fp, + xArgM32int, + xArgM512byte, + xArgM64, + xArgM64fp, + xArgM64int, + xArgM8, + xArgM80bcd, + xArgM80dec, + xArgM80fp, + xArgM94108byte, + xArgMem: + if !haveMem { + inst.Op = 0 + break Decode + } + inst.Args[narg] = mem + inst.MemBytes = int(memBytes[decodeOp(x)]) + if mem.Base == RIP { + inst.PCRel = displen + inst.PCRelOff = dispoff + } + narg++ + + case xArgPtr16colon16: + inst.Args[narg] = Imm(immc >> 16) + inst.Args[narg+1] = Imm(immc & (1<<16 - 1)) + narg += 2 + + case xArgPtr16colon32: + inst.Args[narg] = Imm(immc >> 32) + inst.Args[narg+1] = Imm(immc & (1<<32 - 1)) + narg += 2 + + case xArgMoffs8, xArgMoffs16, xArgMoffs32, xArgMoffs64: + // TODO(rsc): Can address be 64 bits? + mem = Mem{Disp: int64(immc)} + if segIndex >= 0 { + mem.Segment = prefixToSegment(inst.Prefix[segIndex]) + inst.Prefix[segIndex] |= PrefixImplicit + } + inst.Args[narg] = mem + inst.MemBytes = int(memBytes[decodeOp(x)]) + if mem.Base == RIP { + inst.PCRel = displen + inst.PCRelOff = dispoff + } + narg++ + + case xArgYmm1: + base := baseReg[x] + index := Reg(regop) + if inst.Prefix[vexIndex+1]&0x80 == 0 { + index += 8 + } + inst.Args[narg] = base + index + narg++ + + case xArgR8, xArgR16, xArgR32, xArgR64, xArgXmm, xArgXmm1, xArgDR0dashDR7: + base := baseReg[x] + index := Reg(regop) + if rex != 0 && base == AL && index >= 4 { + rexUsed |= PrefixREX + index -= 4 + base = SPB + } + inst.Args[narg] = base + index + narg++ + + case xArgMm, xArgMm1, xArgTR0dashTR7: + inst.Args[narg] = baseReg[x] + Reg(regop&7) + narg++ + + case xArgCR0dashCR7: + // AMD documents an extension that the LOCK prefix + // can be used in place of a REX prefix in order to access + // CR8 from 32-bit mode. The LOCK prefix is allowed in + // all modes, provided the corresponding CPUID bit is set. + if lockIndex >= 0 { + inst.Prefix[lockIndex] |= PrefixImplicit + regop += 8 + } + inst.Args[narg] = CR0 + Reg(regop) + narg++ + + case xArgSreg: + regop &= 7 + if regop >= 6 { + inst.Op = 0 + break Decode + } + inst.Args[narg] = ES + Reg(regop) + narg++ + + case xArgRmf16, xArgRmf32, xArgRmf64: + base := baseReg[x] + index := Reg(modrm & 07) + if rex&PrefixREXB != 0 { + rexUsed |= PrefixREXB + index += 8 + } + inst.Args[narg] = base + index + narg++ + + case xArgR8op, xArgR16op, xArgR32op, xArgR64op, xArgSTi: + n := inst.Opcode >> uint(opshift+8) & 07 + base := baseReg[x] + index := Reg(n) + if rex&PrefixREXB != 0 && decodeOp(x) != xArgSTi { + rexUsed |= PrefixREXB + index += 8 + } + if rex != 0 && base == AL && index >= 4 { + rexUsed |= PrefixREX + index -= 4 + base = SPB + } + inst.Args[narg] = base + index + narg++ + case xArgRM8, xArgRM16, xArgRM32, xArgRM64, xArgR32M16, xArgR32M8, xArgR64M16, + xArgMmM32, xArgMmM64, xArgMm2M64, + xArgXmm2M16, xArgXmm2M32, xArgXmm2M64, xArgXmmM64, xArgXmmM128, xArgXmmM32, xArgXmm2M128, + xArgYmm2M256: + if haveMem { + inst.Args[narg] = mem + inst.MemBytes = int(memBytes[decodeOp(x)]) + if mem.Base == RIP { + inst.PCRel = displen + inst.PCRelOff = dispoff + } + } else { + base := baseReg[x] + index := Reg(rm) + switch decodeOp(x) { + case xArgMmM32, xArgMmM64, xArgMm2M64: + // There are only 8 MMX registers, so these ignore the REX.X bit. + index &= 7 + case xArgRM8: + if rex != 0 && index >= 4 { + rexUsed |= PrefixREX + index -= 4 + base = SPB + } + case xArgYmm2M256: + if vex == 0xC4 && inst.Prefix[vexIndex+1]&0x40 == 0x40 { + index += 8 + } + } + inst.Args[narg] = base + index + } + narg++ + + case xArgMm2: // register only; TODO(rsc): Handle with tag modrm_regonly tag + if haveMem { + inst.Op = 0 + break Decode + } + inst.Args[narg] = baseReg[x] + Reg(rm&7) + narg++ + + case xArgXmm2: // register only; TODO(rsc): Handle with tag modrm_regonly tag + if haveMem { + inst.Op = 0 + break Decode + } + inst.Args[narg] = baseReg[x] + Reg(rm) + narg++ + + case xArgRel8: + inst.PCRelOff = immcpos + inst.PCRel = 1 + inst.Args[narg] = Rel(int8(immc)) + narg++ + + case xArgRel16: + inst.PCRelOff = immcpos + inst.PCRel = 2 + inst.Args[narg] = Rel(int16(immc)) + narg++ + + case xArgRel32: + inst.PCRelOff = immcpos + inst.PCRel = 4 + inst.Args[narg] = Rel(int32(immc)) + narg++ + } + } + + if inst.Op == 0 { + // Invalid instruction. + if nprefix > 0 { + return instPrefix(src[0], mode) // invalid instruction + } + return Inst{Len: pos}, ErrUnrecognized + } + + // Matched! Hooray! + + // 90 decodes as XCHG EAX, EAX but is NOP. + // 66 90 decodes as XCHG AX, AX and is NOP too. + // 48 90 decodes as XCHG RAX, RAX and is NOP too. + // 43 90 decodes as XCHG R8D, EAX and is *not* NOP. + // F3 90 decodes as REP XCHG EAX, EAX but is PAUSE. + // It's all too special to handle in the decoding tables, at least for now. + if inst.Op == XCHG && inst.Opcode>>24 == 0x90 { + if inst.Args[0] == RAX || inst.Args[0] == EAX || inst.Args[0] == AX { + inst.Op = NOP + if dataSizeIndex >= 0 { + inst.Prefix[dataSizeIndex] &^= PrefixImplicit + } + inst.Args[0] = nil + inst.Args[1] = nil + } + if repIndex >= 0 && inst.Prefix[repIndex] == 0xF3 { + inst.Prefix[repIndex] |= PrefixImplicit + inst.Op = PAUSE + inst.Args[0] = nil + inst.Args[1] = nil + } else if gnuCompat { + for i := nprefix - 1; i >= 0; i-- { + if inst.Prefix[i]&0xFF == 0xF3 { + inst.Prefix[i] |= PrefixImplicit + inst.Op = PAUSE + inst.Args[0] = nil + inst.Args[1] = nil + break + } + } + } + } + + // defaultSeg returns the default segment for an implicit + // memory reference: the final override if present, or else DS. + defaultSeg := func() Reg { + if segIndex >= 0 { + inst.Prefix[segIndex] |= PrefixImplicit + return prefixToSegment(inst.Prefix[segIndex]) + } + return DS + } + + // Add implicit arguments not present in the tables. + // Normally we shy away from making implicit arguments explicit, + // following the Intel manuals, but adding the arguments seems + // the best way to express the effect of the segment override prefixes. + // TODO(rsc): Perhaps add these to the tables and + // create bytecode instructions for them. + usedAddrSize := false + switch inst.Op { + case INSB, INSW, INSD: + inst.Args[0] = Mem{Segment: ES, Base: baseRegForBits(addrMode) + DI - AX} + inst.Args[1] = DX + usedAddrSize = true + + case OUTSB, OUTSW, OUTSD: + inst.Args[0] = DX + inst.Args[1] = Mem{Segment: defaultSeg(), Base: baseRegForBits(addrMode) + SI - AX} + usedAddrSize = true + + case MOVSB, MOVSW, MOVSD, MOVSQ: + inst.Args[0] = Mem{Segment: ES, Base: baseRegForBits(addrMode) + DI - AX} + inst.Args[1] = Mem{Segment: defaultSeg(), Base: baseRegForBits(addrMode) + SI - AX} + usedAddrSize = true + + case CMPSB, CMPSW, CMPSD, CMPSQ: + inst.Args[0] = Mem{Segment: defaultSeg(), Base: baseRegForBits(addrMode) + SI - AX} + inst.Args[1] = Mem{Segment: ES, Base: baseRegForBits(addrMode) + DI - AX} + usedAddrSize = true + + case LODSB, LODSW, LODSD, LODSQ: + switch inst.Op { + case LODSB: + inst.Args[0] = AL + case LODSW: + inst.Args[0] = AX + case LODSD: + inst.Args[0] = EAX + case LODSQ: + inst.Args[0] = RAX + } + inst.Args[1] = Mem{Segment: defaultSeg(), Base: baseRegForBits(addrMode) + SI - AX} + usedAddrSize = true + + case STOSB, STOSW, STOSD, STOSQ: + inst.Args[0] = Mem{Segment: ES, Base: baseRegForBits(addrMode) + DI - AX} + switch inst.Op { + case STOSB: + inst.Args[1] = AL + case STOSW: + inst.Args[1] = AX + case STOSD: + inst.Args[1] = EAX + case STOSQ: + inst.Args[1] = RAX + } + usedAddrSize = true + + case SCASB, SCASW, SCASD, SCASQ: + inst.Args[1] = Mem{Segment: ES, Base: baseRegForBits(addrMode) + DI - AX} + switch inst.Op { + case SCASB: + inst.Args[0] = AL + case SCASW: + inst.Args[0] = AX + case SCASD: + inst.Args[0] = EAX + case SCASQ: + inst.Args[0] = RAX + } + usedAddrSize = true + + case XLATB: + inst.Args[0] = Mem{Segment: defaultSeg(), Base: baseRegForBits(addrMode) + BX - AX} + usedAddrSize = true + } + + // If we used the address size annotation to construct the + // argument list, mark that prefix as implicit: it doesn't need + // to be shown when printing the instruction. + if haveMem || usedAddrSize { + if addrSizeIndex >= 0 { + inst.Prefix[addrSizeIndex] |= PrefixImplicit + } + } + + // Similarly, if there's some memory operand, the segment + // will be shown there and doesn't need to be shown as an + // explicit prefix. + if haveMem { + if segIndex >= 0 { + inst.Prefix[segIndex] |= PrefixImplicit + } + } + + // Branch predict prefixes are overloaded segment prefixes, + // since segment prefixes don't make sense on conditional jumps. + // Rewrite final instance to prediction prefix. + // The set of instructions to which the prefixes apply (other then the + // Jcc conditional jumps) is not 100% clear from the manuals, but + // the disassemblers seem to agree about the LOOP and JCXZ instructions, + // so we'll follow along. + // TODO(rsc): Perhaps this instruction class should be derived from the CSV. + if isCondJmp[inst.Op] || isLoop[inst.Op] || inst.Op == JCXZ || inst.Op == JECXZ || inst.Op == JRCXZ { + PredictLoop: + for i := nprefix - 1; i >= 0; i-- { + p := inst.Prefix[i] + switch p & 0xFF { + case PrefixCS: + inst.Prefix[i] = PrefixPN + break PredictLoop + case PrefixDS: + inst.Prefix[i] = PrefixPT + break PredictLoop + } + } + } + + // The BND prefix is part of the Intel Memory Protection Extensions (MPX). + // A REPN applied to certain control transfers is a BND prefix to bound + // the range of possible destinations. There's surprisingly little documentation + // about this, so we just do what libopcodes and xed agree on. + // In particular, it's unclear why a REPN applied to LOOP or JCXZ instructions + // does not turn into a BND. + // TODO(rsc): Perhaps this instruction class should be derived from the CSV. + if isCondJmp[inst.Op] || inst.Op == JMP || inst.Op == CALL || inst.Op == RET { + for i := nprefix - 1; i >= 0; i-- { + p := inst.Prefix[i] + if p&^PrefixIgnored == PrefixREPN { + inst.Prefix[i] = PrefixBND + break + } + } + } + + // The LOCK prefix only applies to certain instructions, and then only + // to instances of the instruction with a memory destination. + // Other uses of LOCK are invalid and cause a processor exception, + // in contrast to the "just ignore it" spirit applied to all other prefixes. + // Mark invalid lock prefixes. + hasLock := false + if lockIndex >= 0 && inst.Prefix[lockIndex]&PrefixImplicit == 0 { + switch inst.Op { + // TODO(rsc): Perhaps this instruction class should be derived from the CSV. + case ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, XCHG: + if isMem(inst.Args[0]) { + hasLock = true + break + } + fallthrough + default: + inst.Prefix[lockIndex] |= PrefixInvalid + } + } + + // In certain cases, all of which require a memory destination, + // the REPN and REP prefixes are interpreted as XACQUIRE and XRELEASE + // from the Intel Transactional Synchroniation Extensions (TSX). + // + // The specific rules are: + // (1) Any instruction with a valid LOCK prefix can have XACQUIRE or XRELEASE. + // (2) Any XCHG, which always has an implicit LOCK, can have XACQUIRE or XRELEASE. + // (3) Any 0x88-, 0x89-, 0xC6-, or 0xC7-opcode MOV can have XRELEASE. + if isMem(inst.Args[0]) { + if inst.Op == XCHG { + hasLock = true + } + + for i := len(inst.Prefix) - 1; i >= 0; i-- { + p := inst.Prefix[i] &^ PrefixIgnored + switch p { + case PrefixREPN: + if hasLock { + inst.Prefix[i] = inst.Prefix[i]&PrefixIgnored | PrefixXACQUIRE + } + + case PrefixREP: + if hasLock { + inst.Prefix[i] = inst.Prefix[i]&PrefixIgnored | PrefixXRELEASE + } + + if inst.Op == MOV { + op := (inst.Opcode >> 24) &^ 1 + if op == 0x88 || op == 0xC6 { + inst.Prefix[i] = inst.Prefix[i]&PrefixIgnored | PrefixXRELEASE + } + } + } + } + } + + // If REP is used on a non-REP-able instruction, mark the prefix as ignored. + if repIndex >= 0 { + switch inst.Prefix[repIndex] { + case PrefixREP, PrefixREPN: + switch inst.Op { + // According to the manuals, the REP/REPE prefix applies to all of these, + // while the REPN applies only to some of them. However, both libopcodes + // and xed show both prefixes explicitly for all instructions, so we do the same. + // TODO(rsc): Perhaps this instruction class should be derived from the CSV. + case INSB, INSW, INSD, + MOVSB, MOVSW, MOVSD, MOVSQ, + OUTSB, OUTSW, OUTSD, + LODSB, LODSW, LODSD, LODSQ, + CMPSB, CMPSW, CMPSD, CMPSQ, + SCASB, SCASW, SCASD, SCASQ, + STOSB, STOSW, STOSD, STOSQ: + // ok + default: + inst.Prefix[repIndex] |= PrefixIgnored + } + } + } + + // If REX was present, mark implicit if all the 1 bits were consumed. + if rexIndex >= 0 { + if rexUsed != 0 { + rexUsed |= PrefixREX + } + if rex&^rexUsed == 0 { + inst.Prefix[rexIndex] |= PrefixImplicit + } + } + + inst.DataSize = dataMode + inst.AddrSize = addrMode + inst.Mode = mode + inst.Len = pos + return inst, nil +} + +var errInternal = errors.New("internal error") + +// addr16 records the eight 16-bit addressing modes. +var addr16 = [8]Mem{ + {Base: BX, Scale: 1, Index: SI}, + {Base: BX, Scale: 1, Index: DI}, + {Base: BP, Scale: 1, Index: SI}, + {Base: BP, Scale: 1, Index: DI}, + {Base: SI}, + {Base: DI}, + {Base: BP}, + {Base: BX}, +} + +// baseReg returns the base register for a given register size in bits. +func baseRegForBits(bits int) Reg { + switch bits { + case 8: + return AL + case 16: + return AX + case 32: + return EAX + case 64: + return RAX + } + return 0 +} + +// baseReg records the base register for argument types that specify +// a range of registers indexed by op, regop, or rm. +var baseReg = [...]Reg{ + xArgDR0dashDR7: DR0, + xArgMm1: M0, + xArgMm2: M0, + xArgMm2M64: M0, + xArgMm: M0, + xArgMmM32: M0, + xArgMmM64: M0, + xArgR16: AX, + xArgR16op: AX, + xArgR32: EAX, + xArgR32M16: EAX, + xArgR32M8: EAX, + xArgR32op: EAX, + xArgR64: RAX, + xArgR64M16: RAX, + xArgR64op: RAX, + xArgR8: AL, + xArgR8op: AL, + xArgRM16: AX, + xArgRM32: EAX, + xArgRM64: RAX, + xArgRM8: AL, + xArgRmf16: AX, + xArgRmf32: EAX, + xArgRmf64: RAX, + xArgSTi: F0, + xArgTR0dashTR7: TR0, + xArgXmm1: X0, + xArgYmm1: X0, + xArgXmm2: X0, + xArgXmm2M128: X0, + xArgYmm2M256: X0, + xArgXmm2M16: X0, + xArgXmm2M32: X0, + xArgXmm2M64: X0, + xArgXmm: X0, + xArgXmmM128: X0, + xArgXmmM32: X0, + xArgXmmM64: X0, +} + +// prefixToSegment returns the segment register +// corresponding to a particular segment prefix. +func prefixToSegment(p Prefix) Reg { + switch p &^ PrefixImplicit { + case PrefixCS: + return CS + case PrefixDS: + return DS + case PrefixES: + return ES + case PrefixFS: + return FS + case PrefixGS: + return GS + case PrefixSS: + return SS + } + return 0 +} + +// fixedArg records the fixed arguments corresponding to the given bytecodes. +var fixedArg = [...]Arg{ + xArg1: Imm(1), + xArg3: Imm(3), + xArgAL: AL, + xArgAX: AX, + xArgDX: DX, + xArgEAX: EAX, + xArgEDX: EDX, + xArgRAX: RAX, + xArgRDX: RDX, + xArgCL: CL, + xArgCS: CS, + xArgDS: DS, + xArgES: ES, + xArgFS: FS, + xArgGS: GS, + xArgSS: SS, + xArgST: F0, + xArgXMM0: X0, +} + +// memBytes records the size of the memory pointed at +// by a memory argument of the given form. +var memBytes = [...]int8{ + xArgM128: 128 / 8, + xArgM256: 256 / 8, + xArgM16: 16 / 8, + xArgM16and16: (16 + 16) / 8, + xArgM16colon16: (16 + 16) / 8, + xArgM16colon32: (16 + 32) / 8, + xArgM16int: 16 / 8, + xArgM2byte: 2, + xArgM32: 32 / 8, + xArgM32and32: (32 + 32) / 8, + xArgM32fp: 32 / 8, + xArgM32int: 32 / 8, + xArgM64: 64 / 8, + xArgM64fp: 64 / 8, + xArgM64int: 64 / 8, + xArgMm2M64: 64 / 8, + xArgMmM32: 32 / 8, + xArgMmM64: 64 / 8, + xArgMoffs16: 16 / 8, + xArgMoffs32: 32 / 8, + xArgMoffs64: 64 / 8, + xArgMoffs8: 8 / 8, + xArgR32M16: 16 / 8, + xArgR32M8: 8 / 8, + xArgR64M16: 16 / 8, + xArgRM16: 16 / 8, + xArgRM32: 32 / 8, + xArgRM64: 64 / 8, + xArgRM8: 8 / 8, + xArgXmm2M128: 128 / 8, + xArgYmm2M256: 256 / 8, + xArgXmm2M16: 16 / 8, + xArgXmm2M32: 32 / 8, + xArgXmm2M64: 64 / 8, + xArgXmm: 128 / 8, + xArgXmmM128: 128 / 8, + xArgXmmM32: 32 / 8, + xArgXmmM64: 64 / 8, +} + +// isCondJmp records the conditional jumps. +var isCondJmp = [maxOp + 1]bool{ + JA: true, + JAE: true, + JB: true, + JBE: true, + JE: true, + JG: true, + JGE: true, + JL: true, + JLE: true, + JNE: true, + JNO: true, + JNP: true, + JNS: true, + JO: true, + JP: true, + JS: true, +} + +// isLoop records the loop operators. +var isLoop = [maxOp + 1]bool{ + LOOP: true, + LOOPE: true, + LOOPNE: true, + JECXZ: true, + JRCXZ: true, +} |