summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/disintegration/imaging/resize.go
diff options
context:
space:
mode:
authorWim <wim@42.be>2020-12-31 14:48:12 +0100
committerGitHub <noreply@github.com>2020-12-31 14:48:12 +0100
commit4f20ebead36876a88391bf033d1de3e4cf0228da (patch)
tree70b6fd79c6a5e00c958c29a7bd3926f074e76ba6 /vendor/github.com/disintegration/imaging/resize.go
parenta9f89dbc645aafc68daa9fc8d589f55104b535c7 (diff)
downloadmatterbridge-msglm-4f20ebead36876a88391bf033d1de3e4cf0228da.tar.gz
matterbridge-msglm-4f20ebead36876a88391bf033d1de3e4cf0228da.tar.bz2
matterbridge-msglm-4f20ebead36876a88391bf033d1de3e4cf0228da.zip
Update vendor for next release (#1343)
Diffstat (limited to 'vendor/github.com/disintegration/imaging/resize.go')
-rw-r--r--vendor/github.com/disintegration/imaging/resize.go595
1 files changed, 595 insertions, 0 deletions
diff --git a/vendor/github.com/disintegration/imaging/resize.go b/vendor/github.com/disintegration/imaging/resize.go
new file mode 100644
index 00000000..706435e3
--- /dev/null
+++ b/vendor/github.com/disintegration/imaging/resize.go
@@ -0,0 +1,595 @@
+package imaging
+
+import (
+ "image"
+ "math"
+)
+
+type indexWeight struct {
+ index int
+ weight float64
+}
+
+func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) [][]indexWeight {
+ du := float64(srcSize) / float64(dstSize)
+ scale := du
+ if scale < 1.0 {
+ scale = 1.0
+ }
+ ru := math.Ceil(scale * filter.Support)
+
+ out := make([][]indexWeight, dstSize)
+ tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2)
+
+ for v := 0; v < dstSize; v++ {
+ fu := (float64(v)+0.5)*du - 0.5
+
+ begin := int(math.Ceil(fu - ru))
+ if begin < 0 {
+ begin = 0
+ }
+ end := int(math.Floor(fu + ru))
+ if end > srcSize-1 {
+ end = srcSize - 1
+ }
+
+ var sum float64
+ for u := begin; u <= end; u++ {
+ w := filter.Kernel((float64(u) - fu) / scale)
+ if w != 0 {
+ sum += w
+ tmp = append(tmp, indexWeight{index: u, weight: w})
+ }
+ }
+ if sum != 0 {
+ for i := range tmp {
+ tmp[i].weight /= sum
+ }
+ }
+
+ out[v] = tmp
+ tmp = tmp[len(tmp):]
+ }
+
+ return out
+}
+
+// Resize resizes the image to the specified width and height using the specified resampling
+// filter and returns the transformed image. If one of width or height is 0, the image aspect
+// ratio is preserved.
+//
+// Example:
+//
+// dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos)
+//
+func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
+ dstW, dstH := width, height
+ if dstW < 0 || dstH < 0 {
+ return &image.NRGBA{}
+ }
+ if dstW == 0 && dstH == 0 {
+ return &image.NRGBA{}
+ }
+
+ srcW := img.Bounds().Dx()
+ srcH := img.Bounds().Dy()
+ if srcW <= 0 || srcH <= 0 {
+ return &image.NRGBA{}
+ }
+
+ // If new width or height is 0 then preserve aspect ratio, minimum 1px.
+ if dstW == 0 {
+ tmpW := float64(dstH) * float64(srcW) / float64(srcH)
+ dstW = int(math.Max(1.0, math.Floor(tmpW+0.5)))
+ }
+ if dstH == 0 {
+ tmpH := float64(dstW) * float64(srcH) / float64(srcW)
+ dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
+ }
+
+ if filter.Support <= 0 {
+ // Nearest-neighbor special case.
+ return resizeNearest(img, dstW, dstH)
+ }
+
+ if srcW != dstW && srcH != dstH {
+ return resizeVertical(resizeHorizontal(img, dstW, filter), dstH, filter)
+ }
+ if srcW != dstW {
+ return resizeHorizontal(img, dstW, filter)
+ }
+ if srcH != dstH {
+ return resizeVertical(img, dstH, filter)
+ }
+ return Clone(img)
+}
+
+func resizeHorizontal(img image.Image, width int, filter ResampleFilter) *image.NRGBA {
+ src := newScanner(img)
+ dst := image.NewNRGBA(image.Rect(0, 0, width, src.h))
+ weights := precomputeWeights(width, src.w, filter)
+ parallel(0, src.h, func(ys <-chan int) {
+ scanLine := make([]uint8, src.w*4)
+ for y := range ys {
+ src.scan(0, y, src.w, y+1, scanLine)
+ j0 := y * dst.Stride
+ for x := range weights {
+ var r, g, b, a float64
+ for _, w := range weights[x] {
+ i := w.index * 4
+ s := scanLine[i : i+4 : i+4]
+ aw := float64(s[3]) * w.weight
+ r += float64(s[0]) * aw
+ g += float64(s[1]) * aw
+ b += float64(s[2]) * aw
+ a += aw
+ }
+ if a != 0 {
+ aInv := 1 / a
+ j := j0 + x*4
+ d := dst.Pix[j : j+4 : j+4]
+ d[0] = clamp(r * aInv)
+ d[1] = clamp(g * aInv)
+ d[2] = clamp(b * aInv)
+ d[3] = clamp(a)
+ }
+ }
+ }
+ })
+ return dst
+}
+
+func resizeVertical(img image.Image, height int, filter ResampleFilter) *image.NRGBA {
+ src := newScanner(img)
+ dst := image.NewNRGBA(image.Rect(0, 0, src.w, height))
+ weights := precomputeWeights(height, src.h, filter)
+ parallel(0, src.w, func(xs <-chan int) {
+ scanLine := make([]uint8, src.h*4)
+ for x := range xs {
+ src.scan(x, 0, x+1, src.h, scanLine)
+ for y := range weights {
+ var r, g, b, a float64
+ for _, w := range weights[y] {
+ i := w.index * 4
+ s := scanLine[i : i+4 : i+4]
+ aw := float64(s[3]) * w.weight
+ r += float64(s[0]) * aw
+ g += float64(s[1]) * aw
+ b += float64(s[2]) * aw
+ a += aw
+ }
+ if a != 0 {
+ aInv := 1 / a
+ j := y*dst.Stride + x*4
+ d := dst.Pix[j : j+4 : j+4]
+ d[0] = clamp(r * aInv)
+ d[1] = clamp(g * aInv)
+ d[2] = clamp(b * aInv)
+ d[3] = clamp(a)
+ }
+ }
+ }
+ })
+ return dst
+}
+
+// resizeNearest is a fast nearest-neighbor resize, no filtering.
+func resizeNearest(img image.Image, width, height int) *image.NRGBA {
+ dst := image.NewNRGBA(image.Rect(0, 0, width, height))
+ dx := float64(img.Bounds().Dx()) / float64(width)
+ dy := float64(img.Bounds().Dy()) / float64(height)
+
+ if dx > 1 && dy > 1 {
+ src := newScanner(img)
+ parallel(0, height, func(ys <-chan int) {
+ for y := range ys {
+ srcY := int((float64(y) + 0.5) * dy)
+ dstOff := y * dst.Stride
+ for x := 0; x < width; x++ {
+ srcX := int((float64(x) + 0.5) * dx)
+ src.scan(srcX, srcY, srcX+1, srcY+1, dst.Pix[dstOff:dstOff+4])
+ dstOff += 4
+ }
+ }
+ })
+ } else {
+ src := toNRGBA(img)
+ parallel(0, height, func(ys <-chan int) {
+ for y := range ys {
+ srcY := int((float64(y) + 0.5) * dy)
+ srcOff0 := srcY * src.Stride
+ dstOff := y * dst.Stride
+ for x := 0; x < width; x++ {
+ srcX := int((float64(x) + 0.5) * dx)
+ srcOff := srcOff0 + srcX*4
+ copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4])
+ dstOff += 4
+ }
+ }
+ })
+ }
+
+ return dst
+}
+
+// Fit scales down the image using the specified resample filter to fit the specified
+// maximum width and height and returns the transformed image.
+//
+// Example:
+//
+// dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
+//
+func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
+ maxW, maxH := width, height
+
+ if maxW <= 0 || maxH <= 0 {
+ return &image.NRGBA{}
+ }
+
+ srcBounds := img.Bounds()
+ srcW := srcBounds.Dx()
+ srcH := srcBounds.Dy()
+
+ if srcW <= 0 || srcH <= 0 {
+ return &image.NRGBA{}
+ }
+
+ if srcW <= maxW && srcH <= maxH {
+ return Clone(img)
+ }
+
+ srcAspectRatio := float64(srcW) / float64(srcH)
+ maxAspectRatio := float64(maxW) / float64(maxH)
+
+ var newW, newH int
+ if srcAspectRatio > maxAspectRatio {
+ newW = maxW
+ newH = int(float64(newW) / srcAspectRatio)
+ } else {
+ newH = maxH
+ newW = int(float64(newH) * srcAspectRatio)
+ }
+
+ return Resize(img, newW, newH, filter)
+}
+
+// Fill creates an image with the specified dimensions and fills it with the scaled source image.
+// To achieve the correct aspect ratio without stretching, the source image will be cropped.
+//
+// Example:
+//
+// dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos)
+//
+func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
+ dstW, dstH := width, height
+
+ if dstW <= 0 || dstH <= 0 {
+ return &image.NRGBA{}
+ }
+
+ srcBounds := img.Bounds()
+ srcW := srcBounds.Dx()
+ srcH := srcBounds.Dy()
+
+ if srcW <= 0 || srcH <= 0 {
+ return &image.NRGBA{}
+ }
+
+ if srcW == dstW && srcH == dstH {
+ return Clone(img)
+ }
+
+ if srcW >= 100 && srcH >= 100 {
+ return cropAndResize(img, dstW, dstH, anchor, filter)
+ }
+ return resizeAndCrop(img, dstW, dstH, anchor, filter)
+}
+
+// cropAndResize crops the image to the smallest possible size that has the required aspect ratio using
+// the given anchor point, then scales it to the specified dimensions and returns the transformed image.
+//
+// This is generally faster than resizing first, but may result in inaccuracies when used on small source images.
+func cropAndResize(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
+ dstW, dstH := width, height
+
+ srcBounds := img.Bounds()
+ srcW := srcBounds.Dx()
+ srcH := srcBounds.Dy()
+ srcAspectRatio := float64(srcW) / float64(srcH)
+ dstAspectRatio := float64(dstW) / float64(dstH)
+
+ var tmp *image.NRGBA
+ if srcAspectRatio < dstAspectRatio {
+ cropH := float64(srcW) * float64(dstH) / float64(dstW)
+ tmp = CropAnchor(img, srcW, int(math.Max(1, cropH)+0.5), anchor)
+ } else {
+ cropW := float64(srcH) * float64(dstW) / float64(dstH)
+ tmp = CropAnchor(img, int(math.Max(1, cropW)+0.5), srcH, anchor)
+ }
+
+ return Resize(tmp, dstW, dstH, filter)
+}
+
+// resizeAndCrop resizes the image to the smallest possible size that will cover the specified dimensions,
+// crops the resized image to the specified dimensions using the given anchor point and returns
+// the transformed image.
+func resizeAndCrop(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
+ dstW, dstH := width, height
+
+ srcBounds := img.Bounds()
+ srcW := srcBounds.Dx()
+ srcH := srcBounds.Dy()
+ srcAspectRatio := float64(srcW) / float64(srcH)
+ dstAspectRatio := float64(dstW) / float64(dstH)
+
+ var tmp *image.NRGBA
+ if srcAspectRatio < dstAspectRatio {
+ tmp = Resize(img, dstW, 0, filter)
+ } else {
+ tmp = Resize(img, 0, dstH, filter)
+ }
+
+ return CropAnchor(tmp, dstW, dstH, anchor)
+}
+
+// Thumbnail scales the image up or down using the specified resample filter, crops it
+// to the specified width and hight and returns the transformed image.
+//
+// Example:
+//
+// dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos)
+//
+func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
+ return Fill(img, width, height, Center, filter)
+}
+
+// ResampleFilter specifies a resampling filter to be used for image resizing.
+//
+// General filter recommendations:
+//
+// - Lanczos
+// A high-quality resampling filter for photographic images yielding sharp results.
+//
+// - CatmullRom
+// A sharp cubic filter that is faster than Lanczos filter while providing similar results.
+//
+// - MitchellNetravali
+// A cubic filter that produces smoother results with less ringing artifacts than CatmullRom.
+//
+// - Linear
+// Bilinear resampling filter, produces a smooth output. Faster than cubic filters.
+//
+// - Box
+// Simple and fast averaging filter appropriate for downscaling.
+// When upscaling it's similar to NearestNeighbor.
+//
+// - NearestNeighbor
+// Fastest resampling filter, no antialiasing.
+//
+type ResampleFilter struct {
+ Support float64
+ Kernel func(float64) float64
+}
+
+// NearestNeighbor is a nearest-neighbor filter (no anti-aliasing).
+var NearestNeighbor ResampleFilter
+
+// Box filter (averaging pixels).
+var Box ResampleFilter
+
+// Linear filter.
+var Linear ResampleFilter
+
+// Hermite cubic spline filter (BC-spline; B=0; C=0).
+var Hermite ResampleFilter
+
+// MitchellNetravali is Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3).
+var MitchellNetravali ResampleFilter
+
+// CatmullRom is a Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5).
+var CatmullRom ResampleFilter
+
+// BSpline is a smooth cubic filter (BC-spline; B=1; C=0).
+var BSpline ResampleFilter
+
+// Gaussian is a Gaussian blurring filter.
+var Gaussian ResampleFilter
+
+// Bartlett is a Bartlett-windowed sinc filter (3 lobes).
+var Bartlett ResampleFilter
+
+// Lanczos filter (3 lobes).
+var Lanczos ResampleFilter
+
+// Hann is a Hann-windowed sinc filter (3 lobes).
+var Hann ResampleFilter
+
+// Hamming is a Hamming-windowed sinc filter (3 lobes).
+var Hamming ResampleFilter
+
+// Blackman is a Blackman-windowed sinc filter (3 lobes).
+var Blackman ResampleFilter
+
+// Welch is a Welch-windowed sinc filter (parabolic window, 3 lobes).
+var Welch ResampleFilter
+
+// Cosine is a Cosine-windowed sinc filter (3 lobes).
+var Cosine ResampleFilter
+
+func bcspline(x, b, c float64) float64 {
+ var y float64
+ x = math.Abs(x)
+ if x < 1.0 {
+ y = ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6
+ } else if x < 2.0 {
+ y = ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6
+ }
+ return y
+}
+
+func sinc(x float64) float64 {
+ if x == 0 {
+ return 1
+ }
+ return math.Sin(math.Pi*x) / (math.Pi * x)
+}
+
+func init() {
+ NearestNeighbor = ResampleFilter{
+ Support: 0.0, // special case - not applying the filter
+ }
+
+ Box = ResampleFilter{
+ Support: 0.5,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x <= 0.5 {
+ return 1.0
+ }
+ return 0
+ },
+ }
+
+ Linear = ResampleFilter{
+ Support: 1.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 1.0 {
+ return 1.0 - x
+ }
+ return 0
+ },
+ }
+
+ Hermite = ResampleFilter{
+ Support: 1.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 1.0 {
+ return bcspline(x, 0.0, 0.0)
+ }
+ return 0
+ },
+ }
+
+ MitchellNetravali = ResampleFilter{
+ Support: 2.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 2.0 {
+ return bcspline(x, 1.0/3.0, 1.0/3.0)
+ }
+ return 0
+ },
+ }
+
+ CatmullRom = ResampleFilter{
+ Support: 2.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 2.0 {
+ return bcspline(x, 0.0, 0.5)
+ }
+ return 0
+ },
+ }
+
+ BSpline = ResampleFilter{
+ Support: 2.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 2.0 {
+ return bcspline(x, 1.0, 0.0)
+ }
+ return 0
+ },
+ }
+
+ Gaussian = ResampleFilter{
+ Support: 2.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 2.0 {
+ return math.Exp(-2 * x * x)
+ }
+ return 0
+ },
+ }
+
+ Bartlett = ResampleFilter{
+ Support: 3.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 3.0 {
+ return sinc(x) * (3.0 - x) / 3.0
+ }
+ return 0
+ },
+ }
+
+ Lanczos = ResampleFilter{
+ Support: 3.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 3.0 {
+ return sinc(x) * sinc(x/3.0)
+ }
+ return 0
+ },
+ }
+
+ Hann = ResampleFilter{
+ Support: 3.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 3.0 {
+ return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0))
+ }
+ return 0
+ },
+ }
+
+ Hamming = ResampleFilter{
+ Support: 3.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 3.0 {
+ return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0))
+ }
+ return 0
+ },
+ }
+
+ Blackman = ResampleFilter{
+ Support: 3.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 3.0 {
+ return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0))
+ }
+ return 0
+ },
+ }
+
+ Welch = ResampleFilter{
+ Support: 3.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 3.0 {
+ return sinc(x) * (1.0 - (x * x / 9.0))
+ }
+ return 0
+ },
+ }
+
+ Cosine = ResampleFilter{
+ Support: 3.0,
+ Kernel: func(x float64) float64 {
+ x = math.Abs(x)
+ if x < 3.0 {
+ return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0))
+ }
+ return 0
+ },
+ }
+}