1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import "errors"
// Matcher is the interface that wraps the Match method.
//
// Match returns the best match for any of the given tags, along with
// a unique index associated with the returned tag and a confidence
// score.
type Matcher interface {
Match(t ...Tag) (tag Tag, index int, c Confidence)
}
// Comprehends reports the confidence score for a speaker of a given language
// to being able to comprehend the written form of an alternative language.
func Comprehends(speaker, alternative Tag) Confidence {
_, _, c := NewMatcher([]Tag{alternative}).Match(speaker)
return c
}
// NewMatcher returns a Matcher that matches an ordered list of preferred tags
// against a list of supported tags based on written intelligibility, closeness
// of dialect, equivalence of subtags and various other rules. It is initialized
// with the list of supported tags. The first element is used as the default
// value in case no match is found.
//
// Its Match method matches the first of the given Tags to reach a certain
// confidence threshold. The tags passed to Match should therefore be specified
// in order of preference. Extensions are ignored for matching.
//
// The index returned by the Match method corresponds to the index of the
// matched tag in t, but is augmented with the Unicode extension ('u')of the
// corresponding preferred tag. This allows user locale options to be passed
// transparently.
func NewMatcher(t []Tag) Matcher {
return newMatcher(t)
}
func (m *matcher) Match(want ...Tag) (t Tag, index int, c Confidence) {
match, w, c := m.getBest(want...)
if match == nil {
t = m.default_.tag
} else {
t, index = match.tag, match.index
}
// Copy options from the user-provided tag into the result tag. This is hard
// to do after the fact, so we do it here.
// TODO: consider also adding in variants that are compatible with the
// matched language.
// TODO: Add back region if it is non-ambiguous? Or create another tag to
// preserve the region?
if u, ok := w.Extension('u'); ok {
t, _ = Raw.Compose(t, u)
}
return t, index, c
}
type scriptRegionFlags uint8
const (
isList = 1 << iota
scriptInFrom
regionInFrom
)
func (t *Tag) setUndefinedLang(id langID) {
if t.lang == 0 {
t.lang = id
}
}
func (t *Tag) setUndefinedScript(id scriptID) {
if t.script == 0 {
t.script = id
}
}
func (t *Tag) setUndefinedRegion(id regionID) {
if t.region == 0 || t.region.contains(id) {
t.region = id
}
}
// ErrMissingLikelyTagsData indicates no information was available
// to compute likely values of missing tags.
var ErrMissingLikelyTagsData = errors.New("missing likely tags data")
// addLikelySubtags sets subtags to their most likely value, given the locale.
// In most cases this means setting fields for unknown values, but in some
// cases it may alter a value. It returns a ErrMissingLikelyTagsData error
// if the given locale cannot be expanded.
func (t Tag) addLikelySubtags() (Tag, error) {
id, err := addTags(t)
if err != nil {
return t, err
} else if id.equalTags(t) {
return t, nil
}
id.remakeString()
return id, nil
}
// specializeRegion attempts to specialize a group region.
func specializeRegion(t *Tag) bool {
if i := regionInclusion[t.region]; i < nRegionGroups {
x := likelyRegionGroup[i]
if langID(x.lang) == t.lang && scriptID(x.script) == t.script {
t.region = regionID(x.region)
}
return true
}
return false
}
func addTags(t Tag) (Tag, error) {
// We leave private use identifiers alone.
if t.private() {
return t, nil
}
if t.script != 0 && t.region != 0 {
if t.lang != 0 {
// already fully specified
specializeRegion(&t)
return t, nil
}
// Search matches for und-script-region. Note that for these cases
// region will never be a group so there is no need to check for this.
list := likelyRegion[t.region : t.region+1]
if x := list[0]; x.flags&isList != 0 {
list = likelyRegionList[x.lang : x.lang+uint16(x.script)]
}
for _, x := range list {
// Deviating from the spec. See match_test.go for details.
if scriptID(x.script) == t.script {
t.setUndefinedLang(langID(x.lang))
return t, nil
}
}
}
if t.lang != 0 {
// Search matches for lang-script and lang-region, where lang != und.
if t.lang < langNoIndexOffset {
x := likelyLang[t.lang]
if x.flags&isList != 0 {
list := likelyLangList[x.region : x.region+uint16(x.script)]
if t.script != 0 {
for _, x := range list {
if scriptID(x.script) == t.script && x.flags&scriptInFrom != 0 {
t.setUndefinedRegion(regionID(x.region))
return t, nil
}
}
} else if t.region != 0 {
count := 0
goodScript := true
tt := t
for _, x := range list {
// We visit all entries for which the script was not
// defined, including the ones where the region was not
// defined. This allows for proper disambiguation within
// regions.
if x.flags&scriptInFrom == 0 && t.region.contains(regionID(x.region)) {
tt.region = regionID(x.region)
tt.setUndefinedScript(scriptID(x.script))
goodScript = goodScript && tt.script == scriptID(x.script)
count++
}
}
if count == 1 {
return tt, nil
}
// Even if we fail to find a unique Region, we might have
// an unambiguous script.
if goodScript {
t.script = tt.script
}
}
}
}
} else {
// Search matches for und-script.
if t.script != 0 {
x := likelyScript[t.script]
if x.region != 0 {
t.setUndefinedRegion(regionID(x.region))
t.setUndefinedLang(langID(x.lang))
return t, nil
}
}
// Search matches for und-region. If und-script-region exists, it would
// have been found earlier.
if t.region != 0 {
if i := regionInclusion[t.region]; i < nRegionGroups {
x := likelyRegionGroup[i]
if x.region != 0 {
t.setUndefinedLang(langID(x.lang))
t.setUndefinedScript(scriptID(x.script))
t.region = regionID(x.region)
}
} else {
x := likelyRegion[t.region]
if x.flags&isList != 0 {
x = likelyRegionList[x.lang]
}
if x.script != 0 && x.flags != scriptInFrom {
t.setUndefinedLang(langID(x.lang))
t.setUndefinedScript(scriptID(x.script))
return t, nil
}
}
}
}
// Search matches for lang.
if t.lang < langNoIndexOffset {
x := likelyLang[t.lang]
if x.flags&isList != 0 {
x = likelyLangList[x.region]
}
if x.region != 0 {
t.setUndefinedScript(scriptID(x.script))
t.setUndefinedRegion(regionID(x.region))
}
specializeRegion(&t)
if t.lang == 0 {
t.lang = _en // default language
}
return t, nil
}
return t, ErrMissingLikelyTagsData
}
func (t *Tag) setTagsFrom(id Tag) {
t.lang = id.lang
t.script = id.script
t.region = id.region
}
// minimize removes the region or script subtags from t such that
// t.addLikelySubtags() == t.minimize().addLikelySubtags().
func (t Tag) minimize() (Tag, error) {
t, err := minimizeTags(t)
if err != nil {
return t, err
}
t.remakeString()
return t, nil
}
// minimizeTags mimics the behavior of the ICU 51 C implementation.
func minimizeTags(t Tag) (Tag, error) {
if t.equalTags(und) {
return t, nil
}
max, err := addTags(t)
if err != nil {
return t, err
}
for _, id := range [...]Tag{
{lang: t.lang},
{lang: t.lang, region: t.region},
{lang: t.lang, script: t.script},
} {
if x, err := addTags(id); err == nil && max.equalTags(x) {
t.setTagsFrom(id)
break
}
}
return t, nil
}
// Tag Matching
// CLDR defines an algorithm for finding the best match between two sets of language
// tags. The basic algorithm defines how to score a possible match and then find
// the match with the best score
// (see http://www.unicode.org/reports/tr35/#LanguageMatching).
// Using scoring has several disadvantages. The scoring obfuscates the importance of
// the various factors considered, making the algorithm harder to understand. Using
// scoring also requires the full score to be computed for each pair of tags.
//
// We will use a different algorithm which aims to have the following properties:
// - clarity on the precedence of the various selection factors, and
// - improved performance by allowing early termination of a comparison.
//
// Matching algorithm (overview)
// Input:
// - supported: a set of supported tags
// - default: the default tag to return in case there is no match
// - desired: list of desired tags, ordered by preference, starting with
// the most-preferred.
//
// Algorithm:
// 1) Set the best match to the lowest confidence level
// 2) For each tag in "desired":
// a) For each tag in "supported":
// 1) compute the match between the two tags.
// 2) if the match is better than the previous best match, replace it
// with the new match. (see next section)
// b) if the current best match is above a certain threshold, return this
// match without proceeding to the next tag in "desired". [See Note 1]
// 3) If the best match so far is below a certain threshold, return "default".
//
// Ranking:
// We use two phases to determine whether one pair of tags are a better match
// than another pair of tags. First, we determine a rough confidence level. If the
// levels are different, the one with the highest confidence wins.
// Second, if the rough confidence levels are identical, we use a set of tie-breaker
// rules.
//
// The confidence level of matching a pair of tags is determined by finding the
// lowest confidence level of any matches of the corresponding subtags (the
// result is deemed as good as its weakest link).
// We define the following levels:
// Exact - An exact match of a subtag, before adding likely subtags.
// MaxExact - An exact match of a subtag, after adding likely subtags.
// [See Note 2].
// High - High level of mutual intelligibility between different subtag
// variants.
// Low - Low level of mutual intelligibility between different subtag
// variants.
// No - No mutual intelligibility.
//
// The following levels can occur for each type of subtag:
// Base: Exact, MaxExact, High, Low, No
// Script: Exact, MaxExact [see Note 3], Low, No
// Region: Exact, MaxExact, High
// Variant: Exact, High
// Private: Exact, No
//
// Any result with a confidence level of Low or higher is deemed a possible match.
// Once a desired tag matches any of the supported tags with a level of MaxExact
// or higher, the next desired tag is not considered (see Step 2.b).
// Note that CLDR provides languageMatching data that defines close equivalence
// classes for base languages, scripts and regions.
//
// Tie-breaking
// If we get the same confidence level for two matches, we apply a sequence of
// tie-breaking rules. The first that succeeds defines the result. The rules are
// applied in the following order.
// 1) Original language was defined and was identical.
// 2) Original region was defined and was identical.
// 3) Distance between two maximized regions was the smallest.
// 4) Original script was defined and was identical.
// 5) Distance from want tag to have tag using the parent relation [see Note 5.]
// If there is still no winner after these rules are applied, the first match
// found wins.
//
// Notes:
// [1] Note that even if we may not have a perfect match, if a match is above a
// certain threshold, it is considered a better match than any other match
// to a tag later in the list of preferred language tags.
// [2] In practice, as matching of Exact is done in a separate phase from
// matching the other levels, we reuse the Exact level to mean MaxExact in
// the second phase. As a consequence, we only need the levels defined by
// the Confidence type. The MaxExact confidence level is mapped to High in
// the public API.
// [3] We do not differentiate between maximized script values that were derived
// from suppressScript versus most likely tag data. We determined that in
// ranking the two, one ranks just after the other. Moreover, the two cannot
// occur concurrently. As a consequence, they are identical for practical
// purposes.
// [4] In case of deprecated, macro-equivalents and legacy mappings, we assign
// the MaxExact level to allow iw vs he to still be a closer match than
// en-AU vs en-US, for example.
// [5] In CLDR a locale inherits fields that are unspecified for this locale
// from its parent. Therefore, if a locale is a parent of another locale,
// it is a strong measure for closeness, especially when no other tie
// breaker rule applies. One could also argue it is inconsistent, for
// example, when pt-AO matches pt (which CLDR equates with pt-BR), even
// though its parent is pt-PT according to the inheritance rules.
//
// Implementation Details:
// There are several performance considerations worth pointing out. Most notably,
// we preprocess as much as possible (within reason) at the time of creation of a
// matcher. This includes:
// - creating a per-language map, which includes data for the raw base language
// and its canonicalized variant (if applicable),
// - expanding entries for the equivalence classes defined in CLDR's
// languageMatch data.
// The per-language map ensures that typically only a very small number of tags
// need to be considered. The pre-expansion of canonicalized subtags and
// equivalence classes reduces the amount of map lookups that need to be done at
// runtime.
// matcher keeps a set of supported language tags, indexed by language.
type matcher struct {
default_ *haveTag
index map[langID]*matchHeader
passSettings bool
}
// matchHeader has the lists of tags for exact matches and matches based on
// maximized and canonicalized tags for a given language.
type matchHeader struct {
exact []*haveTag
max []*haveTag
}
// haveTag holds a supported Tag and its maximized script and region. The maximized
// or canonicalized language is not stored as it is not needed during matching.
type haveTag struct {
tag Tag
// index of this tag in the original list of supported tags.
index int
// conf is the maximum confidence that can result from matching this haveTag.
// When conf < Exact this means it was inserted after applying a CLDR equivalence rule.
conf Confidence
// Maximized region and script.
maxRegion regionID
maxScript scriptID
// altScript may be checked as an alternative match to maxScript. If altScript
// matches, the confidence level for this match is Low. Theoretically there
// could be multiple alternative scripts. This does not occur in practice.
altScript scriptID
// nextMax is the index of the next haveTag with the same maximized tags.
nextMax uint16
}
func makeHaveTag(tag Tag, index int) (haveTag, langID) {
max := tag
if tag.lang != 0 {
max, _ = max.canonicalize(All)
max, _ = addTags(max)
max.remakeString()
}
return haveTag{tag, index, Exact, max.region, max.script, altScript(max.lang, max.script), 0}, max.lang
}
// altScript returns an alternative script that may match the given script with
// a low confidence. At the moment, the langMatch data allows for at most one
// script to map to another and we rely on this to keep the code simple.
func altScript(l langID, s scriptID) scriptID {
for _, alt := range matchScript {
if (alt.lang == 0 || langID(alt.lang) == l) && scriptID(alt.have) == s {
return scriptID(alt.want)
}
}
return 0
}
// addIfNew adds a haveTag to the list of tags only if it is a unique tag.
// Tags that have the same maximized values are linked by index.
func (h *matchHeader) addIfNew(n haveTag, exact bool) {
// Don't add new exact matches.
for _, v := range h.exact {
if v.tag.equalsRest(n.tag) {
return
}
}
if exact {
h.exact = append(h.exact, &n)
}
// Allow duplicate maximized tags, but create a linked list to allow quickly
// comparing the equivalents and bail out.
for i, v := range h.max {
if v.maxScript == n.maxScript &&
v.maxRegion == n.maxRegion &&
v.tag.variantOrPrivateTagStr() == n.tag.variantOrPrivateTagStr() {
for h.max[i].nextMax != 0 {
i = int(h.max[i].nextMax)
}
h.max[i].nextMax = uint16(len(h.max))
break
}
}
h.max = append(h.max, &n)
}
// header returns the matchHeader for the given language. It creates one if
// it doesn't already exist.
func (m *matcher) header(l langID) *matchHeader {
if h := m.index[l]; h != nil {
return h
}
h := &matchHeader{}
m.index[l] = h
return h
}
// newMatcher builds an index for the given supported tags and returns it as
// a matcher. It also expands the index by considering various equivalence classes
// for a given tag.
func newMatcher(supported []Tag) *matcher {
m := &matcher{
index: make(map[langID]*matchHeader),
}
if len(supported) == 0 {
m.default_ = &haveTag{}
return m
}
// Add supported languages to the index. Add exact matches first to give
// them precedence.
for i, tag := range supported {
pair, _ := makeHaveTag(tag, i)
m.header(tag.lang).addIfNew(pair, true)
}
m.default_ = m.header(supported[0].lang).exact[0]
for i, tag := range supported {
pair, max := makeHaveTag(tag, i)
if max != tag.lang {
m.header(max).addIfNew(pair, false)
}
}
// update is used to add indexes in the map for equivalent languages.
// If force is true, the update will also apply to derived entries. To
// avoid applying a "transitive closure", use false.
update := func(want, have uint16, conf Confidence, force bool) {
if hh := m.index[langID(have)]; hh != nil {
if !force && len(hh.exact) == 0 {
return
}
hw := m.header(langID(want))
for _, ht := range hh.max {
v := *ht
if conf < v.conf {
v.conf = conf
}
v.nextMax = 0 // this value needs to be recomputed
if v.altScript != 0 {
v.altScript = altScript(langID(want), v.maxScript)
}
hw.addIfNew(v, conf == Exact && len(hh.exact) > 0)
}
}
}
// Add entries for languages with mutual intelligibility as defined by CLDR's
// languageMatch data.
for _, ml := range matchLang {
update(ml.want, ml.have, Confidence(ml.conf), false)
if !ml.oneway {
update(ml.have, ml.want, Confidence(ml.conf), false)
}
}
// Add entries for possible canonicalizations. This is an optimization to
// ensure that only one map lookup needs to be done at runtime per desired tag.
// First we match deprecated equivalents. If they are perfect equivalents
// (their canonicalization simply substitutes a different language code, but
// nothing else), the match confidence is Exact, otherwise it is High.
for i, lm := range langAliasMap {
if lm.from == _sh {
continue
}
// If deprecated codes match and there is no fiddling with the script or
// or region, we consider it an exact match.
conf := Exact
if langAliasTypes[i] != langMacro {
if !isExactEquivalent(langID(lm.from)) {
conf = High
}
update(lm.to, lm.from, conf, true)
}
update(lm.from, lm.to, conf, true)
}
return m
}
// getBest gets the best matching tag in m for any of the given tags, taking into
// account the order of preference of the given tags.
func (m *matcher) getBest(want ...Tag) (got *haveTag, orig Tag, c Confidence) {
best := bestMatch{}
for _, w := range want {
var max Tag
// Check for exact match first.
h := m.index[w.lang]
if w.lang != 0 {
// Base language is defined.
if h == nil {
continue
}
for i := range h.exact {
have := h.exact[i]
if have.tag.equalsRest(w) {
return have, w, Exact
}
}
max, _ = w.canonicalize(Legacy | Deprecated)
max, _ = addTags(max)
} else {
// Base language is not defined.
if h != nil {
for i := range h.exact {
have := h.exact[i]
if have.tag.equalsRest(w) {
return have, w, Exact
}
}
}
if w.script == 0 && w.region == 0 {
// We skip all tags matching und for approximate matching, including
// private tags.
continue
}
max, _ = addTags(w)
if h = m.index[max.lang]; h == nil {
continue
}
}
// Check for match based on maximized tag.
for i := range h.max {
have := h.max[i]
best.update(have, w, max.script, max.region)
if best.conf == Exact {
for have.nextMax != 0 {
have = h.max[have.nextMax]
best.update(have, w, max.script, max.region)
}
return best.have, best.want, High
}
}
}
if best.conf <= No {
if len(want) != 0 {
return nil, want[0], No
}
return nil, Tag{}, No
}
return best.have, best.want, best.conf
}
// bestMatch accumulates the best match so far.
type bestMatch struct {
have *haveTag
want Tag
conf Confidence
// Cached results from applying tie-breaking rules.
origLang bool
origReg bool
regDist uint8
origScript bool
parentDist uint8 // 255 if have is not an ancestor of want tag.
}
// update updates the existing best match if the new pair is considered to be a
// better match.
// To determine if the given pair is a better match, it first computes the rough
// confidence level. If this surpasses the current match, it will replace it and
// update the tie-breaker rule cache. If there is a tie, it proceeds with applying
// a series of tie-breaker rules. If there is no conclusive winner after applying
// the tie-breaker rules, it leaves the current match as the preferred match.
func (m *bestMatch) update(have *haveTag, tag Tag, maxScript scriptID, maxRegion regionID) {
// Bail if the maximum attainable confidence is below that of the current best match.
c := have.conf
if c < m.conf {
return
}
if have.maxScript != maxScript {
// There is usually very little comprehension between different scripts.
// In a few cases there may still be Low comprehension. This possibility is
// pre-computed and stored in have.altScript.
if Low < m.conf || have.altScript != maxScript {
return
}
c = Low
} else if have.maxRegion != maxRegion {
// There is usually a small difference between languages across regions.
// We use the region distance (below) to disambiguate between equal matches.
if High < c {
c = High
}
}
// We store the results of the computations of the tie-breaker rules along
// with the best match. There is no need to do the checks once we determine
// we have a winner, but we do still need to do the tie-breaker computations.
// We use "beaten" to keep track if we still need to do the checks.
beaten := false // true if the new pair defeats the current one.
if c != m.conf {
if c < m.conf {
return
}
beaten = true
}
// Tie-breaker rules:
// We prefer if the pre-maximized language was specified and identical.
origLang := have.tag.lang == tag.lang && tag.lang != 0
if !beaten && m.origLang != origLang {
if m.origLang {
return
}
beaten = true
}
// We prefer if the pre-maximized region was specified and identical.
origReg := have.tag.region == tag.region && tag.region != 0
if !beaten && m.origReg != origReg {
if m.origReg {
return
}
beaten = true
}
// Next we prefer smaller distances between regions, as defined by regionDist.
regDist := regionDist(have.maxRegion, maxRegion, tag.lang)
if !beaten && m.regDist != regDist {
if regDist > m.regDist {
return
}
beaten = true
}
// Next we prefer if the pre-maximized script was specified and identical.
origScript := have.tag.script == tag.script && tag.script != 0
if !beaten && m.origScript != origScript {
if m.origScript {
return
}
beaten = true
}
// Finally we prefer tags which have a closer parent relationship.
parentDist := parentDistance(have.tag.region, tag)
if !beaten && m.parentDist != parentDist {
if parentDist > m.parentDist {
return
}
beaten = true
}
// Update m to the newly found best match.
if beaten {
m.have = have
m.want = tag
m.conf = c
m.origLang = origLang
m.origReg = origReg
m.origScript = origScript
m.regDist = regDist
m.parentDist = parentDist
}
}
// parentDistance returns the number of times Parent must be called before the
// regions match. It is assumed that it has already been checked that lang and
// script are identical. If haveRegion does not occur in the ancestor chain of
// tag, it returns 255.
func parentDistance(haveRegion regionID, tag Tag) uint8 {
p := tag.Parent()
d := uint8(1)
for haveRegion != p.region {
if p.region == 0 {
return 255
}
p = p.Parent()
d++
}
return d
}
// regionDist wraps regionDistance with some exceptions to the algorithmic distance.
func regionDist(a, b regionID, lang langID) uint8 {
if lang == _en {
// Two variants of non-US English are close to each other, regardless of distance.
if a != _US && b != _US {
return 2
}
}
return uint8(regionDistance(a, b))
}
// regionDistance computes the distance between two regions based on the
// distance in the graph of region containments as defined in CLDR. It iterates
// over increasingly inclusive sets of groups, represented as bit vectors, until
// the source bit vector has bits in common with the destination vector.
func regionDistance(a, b regionID) int {
if a == b {
return 0
}
p, q := regionInclusion[a], regionInclusion[b]
if p < nRegionGroups {
p, q = q, p
}
set := regionInclusionBits
if q < nRegionGroups && set[p]&(1<<q) != 0 {
return 1
}
d := 2
for goal := set[q]; set[p]&goal == 0; p = regionInclusionNext[p] {
d++
}
return d
}
func (t Tag) variants() string {
if t.pVariant == 0 {
return ""
}
return t.str[t.pVariant:t.pExt]
}
// variantOrPrivateTagStr returns variants or private use tags.
func (t Tag) variantOrPrivateTagStr() string {
if t.pExt > 0 {
return t.str[t.pVariant:t.pExt]
}
return t.str[t.pVariant:]
}
// equalsRest compares everything except the language.
func (a Tag) equalsRest(b Tag) bool {
// TODO: don't include extensions in this comparison. To do this efficiently,
// though, we should handle private tags separately.
return a.script == b.script && a.region == b.region && a.variantOrPrivateTagStr() == b.variantOrPrivateTagStr()
}
// isExactEquivalent returns true if canonicalizing the language will not alter
// the script or region of a tag.
func isExactEquivalent(l langID) bool {
for _, o := range notEquivalent {
if o == l {
return false
}
}
return true
}
var notEquivalent []langID
func init() {
// Create a list of all languages for which canonicalization may alter the
// script or region.
for _, lm := range langAliasMap {
tag := Tag{lang: langID(lm.from)}
if tag, _ = tag.canonicalize(All); tag.script != 0 || tag.region != 0 {
notEquivalent = append(notEquivalent, langID(lm.from))
}
}
}
|