summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/acme/jws.go
blob: 403e5b0c233c2cda74ef4a901fe9f1e2559146b0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package acme

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/hmac"
	"crypto/rand"
	"crypto/rsa"
	"crypto/sha256"
	_ "crypto/sha512" // need for EC keys
	"encoding/asn1"
	"encoding/base64"
	"encoding/json"
	"errors"
	"fmt"
	"math/big"
)

// KeyID is the account key identity provided by a CA during registration.
type KeyID string

// noKeyID indicates that jwsEncodeJSON should compute and use JWK instead of a KID.
// See jwsEncodeJSON for details.
const noKeyID = KeyID("")

// noPayload indicates jwsEncodeJSON will encode zero-length octet string
// in a JWS request. This is called POST-as-GET in RFC 8555 and is used to make
// authenticated GET requests via POSTing with an empty payload.
// See https://tools.ietf.org/html/rfc8555#section-6.3 for more details.
const noPayload = ""

// jsonWebSignature can be easily serialized into a JWS following
// https://tools.ietf.org/html/rfc7515#section-3.2.
type jsonWebSignature struct {
	Protected string `json:"protected"`
	Payload   string `json:"payload"`
	Sig       string `json:"signature"`
}

// jwsEncodeJSON signs claimset using provided key and a nonce.
// The result is serialized in JSON format containing either kid or jwk
// fields based on the provided KeyID value.
//
// If kid is non-empty, its quoted value is inserted in the protected head
// as "kid" field value. Otherwise, JWK is computed using jwkEncode and inserted
// as "jwk" field value. The "jwk" and "kid" fields are mutually exclusive.
//
// See https://tools.ietf.org/html/rfc7515#section-7.
func jwsEncodeJSON(claimset interface{}, key crypto.Signer, kid KeyID, nonce, url string) ([]byte, error) {
	if key == nil {
		return nil, errors.New("nil key")
	}
	alg, sha := jwsHasher(key.Public())
	if alg == "" || !sha.Available() {
		return nil, ErrUnsupportedKey
	}
	var phead string
	switch kid {
	case noKeyID:
		jwk, err := jwkEncode(key.Public())
		if err != nil {
			return nil, err
		}
		phead = fmt.Sprintf(`{"alg":%q,"jwk":%s,"nonce":%q,"url":%q}`, alg, jwk, nonce, url)
	default:
		phead = fmt.Sprintf(`{"alg":%q,"kid":%q,"nonce":%q,"url":%q}`, alg, kid, nonce, url)
	}
	phead = base64.RawURLEncoding.EncodeToString([]byte(phead))
	var payload string
	if claimset != noPayload {
		cs, err := json.Marshal(claimset)
		if err != nil {
			return nil, err
		}
		payload = base64.RawURLEncoding.EncodeToString(cs)
	}
	hash := sha.New()
	hash.Write([]byte(phead + "." + payload))
	sig, err := jwsSign(key, sha, hash.Sum(nil))
	if err != nil {
		return nil, err
	}
	enc := jsonWebSignature{
		Protected: phead,
		Payload:   payload,
		Sig:       base64.RawURLEncoding.EncodeToString(sig),
	}
	return json.Marshal(&enc)
}

// jwsWithMAC creates and signs a JWS using the given key and the HS256
// algorithm. kid and url are included in the protected header. rawPayload
// should not be base64-URL-encoded.
func jwsWithMAC(key []byte, kid, url string, rawPayload []byte) (*jsonWebSignature, error) {
	if len(key) == 0 {
		return nil, errors.New("acme: cannot sign JWS with an empty MAC key")
	}
	header := struct {
		Algorithm string `json:"alg"`
		KID       string `json:"kid"`
		URL       string `json:"url,omitempty"`
	}{
		// Only HMAC-SHA256 is supported.
		Algorithm: "HS256",
		KID:       kid,
		URL:       url,
	}
	rawProtected, err := json.Marshal(header)
	if err != nil {
		return nil, err
	}
	protected := base64.RawURLEncoding.EncodeToString(rawProtected)
	payload := base64.RawURLEncoding.EncodeToString(rawPayload)

	h := hmac.New(sha256.New, key)
	if _, err := h.Write([]byte(protected + "." + payload)); err != nil {
		return nil, err
	}
	mac := h.Sum(nil)

	return &jsonWebSignature{
		Protected: protected,
		Payload:   payload,
		Sig:       base64.RawURLEncoding.EncodeToString(mac),
	}, nil
}

// jwkEncode encodes public part of an RSA or ECDSA key into a JWK.
// The result is also suitable for creating a JWK thumbprint.
// https://tools.ietf.org/html/rfc7517
func jwkEncode(pub crypto.PublicKey) (string, error) {
	switch pub := pub.(type) {
	case *rsa.PublicKey:
		// https://tools.ietf.org/html/rfc7518#section-6.3.1
		n := pub.N
		e := big.NewInt(int64(pub.E))
		// Field order is important.
		// See https://tools.ietf.org/html/rfc7638#section-3.3 for details.
		return fmt.Sprintf(`{"e":"%s","kty":"RSA","n":"%s"}`,
			base64.RawURLEncoding.EncodeToString(e.Bytes()),
			base64.RawURLEncoding.EncodeToString(n.Bytes()),
		), nil
	case *ecdsa.PublicKey:
		// https://tools.ietf.org/html/rfc7518#section-6.2.1
		p := pub.Curve.Params()
		n := p.BitSize / 8
		if p.BitSize%8 != 0 {
			n++
		}
		x := pub.X.Bytes()
		if n > len(x) {
			x = append(make([]byte, n-len(x)), x...)
		}
		y := pub.Y.Bytes()
		if n > len(y) {
			y = append(make([]byte, n-len(y)), y...)
		}
		// Field order is important.
		// See https://tools.ietf.org/html/rfc7638#section-3.3 for details.
		return fmt.Sprintf(`{"crv":"%s","kty":"EC","x":"%s","y":"%s"}`,
			p.Name,
			base64.RawURLEncoding.EncodeToString(x),
			base64.RawURLEncoding.EncodeToString(y),
		), nil
	}
	return "", ErrUnsupportedKey
}

// jwsSign signs the digest using the given key.
// The hash is unused for ECDSA keys.
func jwsSign(key crypto.Signer, hash crypto.Hash, digest []byte) ([]byte, error) {
	switch pub := key.Public().(type) {
	case *rsa.PublicKey:
		return key.Sign(rand.Reader, digest, hash)
	case *ecdsa.PublicKey:
		sigASN1, err := key.Sign(rand.Reader, digest, hash)
		if err != nil {
			return nil, err
		}

		var rs struct{ R, S *big.Int }
		if _, err := asn1.Unmarshal(sigASN1, &rs); err != nil {
			return nil, err
		}

		rb, sb := rs.R.Bytes(), rs.S.Bytes()
		size := pub.Params().BitSize / 8
		if size%8 > 0 {
			size++
		}
		sig := make([]byte, size*2)
		copy(sig[size-len(rb):], rb)
		copy(sig[size*2-len(sb):], sb)
		return sig, nil
	}
	return nil, ErrUnsupportedKey
}

// jwsHasher indicates suitable JWS algorithm name and a hash function
// to use for signing a digest with the provided key.
// It returns ("", 0) if the key is not supported.
func jwsHasher(pub crypto.PublicKey) (string, crypto.Hash) {
	switch pub := pub.(type) {
	case *rsa.PublicKey:
		return "RS256", crypto.SHA256
	case *ecdsa.PublicKey:
		switch pub.Params().Name {
		case "P-256":
			return "ES256", crypto.SHA256
		case "P-384":
			return "ES384", crypto.SHA384
		case "P-521":
			return "ES512", crypto.SHA512
		}
	}
	return "", 0
}

// JWKThumbprint creates a JWK thumbprint out of pub
// as specified in https://tools.ietf.org/html/rfc7638.
func JWKThumbprint(pub crypto.PublicKey) (string, error) {
	jwk, err := jwkEncode(pub)
	if err != nil {
		return "", err
	}
	b := sha256.Sum256([]byte(jwk))
	return base64.RawURLEncoding.EncodeToString(b[:]), nil
}