1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
// Copyright (c) 2016 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package zap
import (
"fmt"
"math"
"time"
"go.uber.org/zap/zapcore"
)
// Field is an alias for Field. Aliasing this type dramatically
// improves the navigability of this package's API documentation.
type Field = zapcore.Field
// Skip constructs a no-op field, which is often useful when handling invalid
// inputs in other Field constructors.
func Skip() Field {
return Field{Type: zapcore.SkipType}
}
// Binary constructs a field that carries an opaque binary blob.
//
// Binary data is serialized in an encoding-appropriate format. For example,
// zap's JSON encoder base64-encodes binary blobs. To log UTF-8 encoded text,
// use ByteString.
func Binary(key string, val []byte) Field {
return Field{Key: key, Type: zapcore.BinaryType, Interface: val}
}
// Bool constructs a field that carries a bool.
func Bool(key string, val bool) Field {
var ival int64
if val {
ival = 1
}
return Field{Key: key, Type: zapcore.BoolType, Integer: ival}
}
// ByteString constructs a field that carries UTF-8 encoded text as a []byte.
// To log opaque binary blobs (which aren't necessarily valid UTF-8), use
// Binary.
func ByteString(key string, val []byte) Field {
return Field{Key: key, Type: zapcore.ByteStringType, Interface: val}
}
// Complex128 constructs a field that carries a complex number. Unlike most
// numeric fields, this costs an allocation (to convert the complex128 to
// interface{}).
func Complex128(key string, val complex128) Field {
return Field{Key: key, Type: zapcore.Complex128Type, Interface: val}
}
// Complex64 constructs a field that carries a complex number. Unlike most
// numeric fields, this costs an allocation (to convert the complex64 to
// interface{}).
func Complex64(key string, val complex64) Field {
return Field{Key: key, Type: zapcore.Complex64Type, Interface: val}
}
// Float64 constructs a field that carries a float64. The way the
// floating-point value is represented is encoder-dependent, so marshaling is
// necessarily lazy.
func Float64(key string, val float64) Field {
return Field{Key: key, Type: zapcore.Float64Type, Integer: int64(math.Float64bits(val))}
}
// Float32 constructs a field that carries a float32. The way the
// floating-point value is represented is encoder-dependent, so marshaling is
// necessarily lazy.
func Float32(key string, val float32) Field {
return Field{Key: key, Type: zapcore.Float32Type, Integer: int64(math.Float32bits(val))}
}
// Int constructs a field with the given key and value.
func Int(key string, val int) Field {
return Int64(key, int64(val))
}
// Int64 constructs a field with the given key and value.
func Int64(key string, val int64) Field {
return Field{Key: key, Type: zapcore.Int64Type, Integer: val}
}
// Int32 constructs a field with the given key and value.
func Int32(key string, val int32) Field {
return Field{Key: key, Type: zapcore.Int32Type, Integer: int64(val)}
}
// Int16 constructs a field with the given key and value.
func Int16(key string, val int16) Field {
return Field{Key: key, Type: zapcore.Int16Type, Integer: int64(val)}
}
// Int8 constructs a field with the given key and value.
func Int8(key string, val int8) Field {
return Field{Key: key, Type: zapcore.Int8Type, Integer: int64(val)}
}
// String constructs a field with the given key and value.
func String(key string, val string) Field {
return Field{Key: key, Type: zapcore.StringType, String: val}
}
// Uint constructs a field with the given key and value.
func Uint(key string, val uint) Field {
return Uint64(key, uint64(val))
}
// Uint64 constructs a field with the given key and value.
func Uint64(key string, val uint64) Field {
return Field{Key: key, Type: zapcore.Uint64Type, Integer: int64(val)}
}
// Uint32 constructs a field with the given key and value.
func Uint32(key string, val uint32) Field {
return Field{Key: key, Type: zapcore.Uint32Type, Integer: int64(val)}
}
// Uint16 constructs a field with the given key and value.
func Uint16(key string, val uint16) Field {
return Field{Key: key, Type: zapcore.Uint16Type, Integer: int64(val)}
}
// Uint8 constructs a field with the given key and value.
func Uint8(key string, val uint8) Field {
return Field{Key: key, Type: zapcore.Uint8Type, Integer: int64(val)}
}
// Uintptr constructs a field with the given key and value.
func Uintptr(key string, val uintptr) Field {
return Field{Key: key, Type: zapcore.UintptrType, Integer: int64(val)}
}
// Reflect constructs a field with the given key and an arbitrary object. It uses
// an encoding-appropriate, reflection-based function to lazily serialize nearly
// any object into the logging context, but it's relatively slow and
// allocation-heavy. Outside tests, Any is always a better choice.
//
// If encoding fails (e.g., trying to serialize a map[int]string to JSON), Reflect
// includes the error message in the final log output.
func Reflect(key string, val interface{}) Field {
return Field{Key: key, Type: zapcore.ReflectType, Interface: val}
}
// Namespace creates a named, isolated scope within the logger's context. All
// subsequent fields will be added to the new namespace.
//
// This helps prevent key collisions when injecting loggers into sub-components
// or third-party libraries.
func Namespace(key string) Field {
return Field{Key: key, Type: zapcore.NamespaceType}
}
// Stringer constructs a field with the given key and the output of the value's
// String method. The Stringer's String method is called lazily.
func Stringer(key string, val fmt.Stringer) Field {
return Field{Key: key, Type: zapcore.StringerType, Interface: val}
}
// Time constructs a Field with the given key and value. The encoder
// controls how the time is serialized.
func Time(key string, val time.Time) Field {
return Field{Key: key, Type: zapcore.TimeType, Integer: val.UnixNano(), Interface: val.Location()}
}
// Stack constructs a field that stores a stacktrace of the current goroutine
// under provided key. Keep in mind that taking a stacktrace is eager and
// expensive (relatively speaking); this function both makes an allocation and
// takes about two microseconds.
func Stack(key string) Field {
// Returning the stacktrace as a string costs an allocation, but saves us
// from expanding the zapcore.Field union struct to include a byte slice. Since
// taking a stacktrace is already so expensive (~10us), the extra allocation
// is okay.
return String(key, takeStacktrace())
}
// Duration constructs a field with the given key and value. The encoder
// controls how the duration is serialized.
func Duration(key string, val time.Duration) Field {
return Field{Key: key, Type: zapcore.DurationType, Integer: int64(val)}
}
// Object constructs a field with the given key and ObjectMarshaler. It
// provides a flexible, but still type-safe and efficient, way to add map- or
// struct-like user-defined types to the logging context. The struct's
// MarshalLogObject method is called lazily.
func Object(key string, val zapcore.ObjectMarshaler) Field {
return Field{Key: key, Type: zapcore.ObjectMarshalerType, Interface: val}
}
// Any takes a key and an arbitrary value and chooses the best way to represent
// them as a field, falling back to a reflection-based approach only if
// necessary.
//
// Since byte/uint8 and rune/int32 are aliases, Any can't differentiate between
// them. To minimize surprises, []byte values are treated as binary blobs, byte
// values are treated as uint8, and runes are always treated as integers.
func Any(key string, value interface{}) Field {
switch val := value.(type) {
case zapcore.ObjectMarshaler:
return Object(key, val)
case zapcore.ArrayMarshaler:
return Array(key, val)
case bool:
return Bool(key, val)
case []bool:
return Bools(key, val)
case complex128:
return Complex128(key, val)
case []complex128:
return Complex128s(key, val)
case complex64:
return Complex64(key, val)
case []complex64:
return Complex64s(key, val)
case float64:
return Float64(key, val)
case []float64:
return Float64s(key, val)
case float32:
return Float32(key, val)
case []float32:
return Float32s(key, val)
case int:
return Int(key, val)
case []int:
return Ints(key, val)
case int64:
return Int64(key, val)
case []int64:
return Int64s(key, val)
case int32:
return Int32(key, val)
case []int32:
return Int32s(key, val)
case int16:
return Int16(key, val)
case []int16:
return Int16s(key, val)
case int8:
return Int8(key, val)
case []int8:
return Int8s(key, val)
case string:
return String(key, val)
case []string:
return Strings(key, val)
case uint:
return Uint(key, val)
case []uint:
return Uints(key, val)
case uint64:
return Uint64(key, val)
case []uint64:
return Uint64s(key, val)
case uint32:
return Uint32(key, val)
case []uint32:
return Uint32s(key, val)
case uint16:
return Uint16(key, val)
case []uint16:
return Uint16s(key, val)
case uint8:
return Uint8(key, val)
case []byte:
return Binary(key, val)
case uintptr:
return Uintptr(key, val)
case []uintptr:
return Uintptrs(key, val)
case time.Time:
return Time(key, val)
case []time.Time:
return Times(key, val)
case time.Duration:
return Duration(key, val)
case []time.Duration:
return Durations(key, val)
case error:
return NamedError(key, val)
case []error:
return Errors(key, val)
case fmt.Stringer:
return Stringer(key, val)
default:
return Reflect(key, val)
}
}
|