summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/rs/xid/id.go
blob: fcd7a0413519e51b2fcc1e58a7144f8df66cad62 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Package xid is a globally unique id generator suited for web scale
//
// Xid is using Mongo Object ID algorithm to generate globally unique ids:
// https://docs.mongodb.org/manual/reference/object-id/
//
//   - 4-byte value representing the seconds since the Unix epoch,
//   - 3-byte machine identifier,
//   - 2-byte process id, and
//   - 3-byte counter, starting with a random value.
//
// The binary representation of the id is compatible with Mongo 12 bytes Object IDs.
// The string representation is using base32 hex (w/o padding) for better space efficiency
// when stored in that form (20 bytes). The hex variant of base32 is used to retain the
// sortable property of the id.
//
// Xid doesn't use base64 because case sensitivity and the 2 non alphanum chars may be an
// issue when transported as a string between various systems. Base36 wasn't retained either
// because 1/ it's not standard 2/ the resulting size is not predictable (not bit aligned)
// and 3/ it would not remain sortable. To validate a base32 `xid`, expect a 20 chars long,
// all lowercase sequence of `a` to `v` letters and `0` to `9` numbers (`[0-9a-v]{20}`).
//
// UUID is 16 bytes (128 bits), snowflake is 8 bytes (64 bits), xid stands in between
// with 12 bytes with a more compact string representation ready for the web and no
// required configuration or central generation server.
//
// Features:
//
//   - Size: 12 bytes (96 bits), smaller than UUID, larger than snowflake
//   - Base32 hex encoded by default (16 bytes storage when transported as printable string)
//   - Non configured, you don't need set a unique machine and/or data center id
//   - K-ordered
//   - Embedded time with 1 second precision
//   - Unicity guaranteed for 16,777,216 (24 bits) unique ids per second and per host/process
//
// Best used with xlog's RequestIDHandler (https://godoc.org/github.com/rs/xlog#RequestIDHandler).
//
// References:
//
//   - http://www.slideshare.net/davegardnerisme/unique-id-generation-in-distributed-systems
//   - https://en.wikipedia.org/wiki/Universally_unique_identifier
//   - https://blog.twitter.com/2010/announcing-snowflake
package xid

import (
	"bytes"
	"crypto/sha256"
	"crypto/rand"
	"database/sql/driver"
	"encoding/binary"
	"fmt"
	"hash/crc32"
	"io/ioutil"
	"os"
	"sort"
	"sync/atomic"
	"time"
	"unsafe"
)

// Code inspired from mgo/bson ObjectId

// ID represents a unique request id
type ID [rawLen]byte

const (
	encodedLen = 20 // string encoded len
	rawLen     = 12 // binary raw len

	// encoding stores a custom version of the base32 encoding with lower case
	// letters.
	encoding = "0123456789abcdefghijklmnopqrstuv"
)

var (
	// objectIDCounter is atomically incremented when generating a new ObjectId. It's
	// used as the counter part of an id. This id is initialized with a random value.
	objectIDCounter = randInt()

	// machineID is generated once and used in subsequent calls to the New* functions.
	machineID = readMachineID()

	// pid stores the current process id
	pid = os.Getpid()

	nilID ID

	// dec is the decoding map for base32 encoding
	dec [256]byte
)

func init() {
	for i := 0; i < len(dec); i++ {
		dec[i] = 0xFF
	}
	for i := 0; i < len(encoding); i++ {
		dec[encoding[i]] = byte(i)
	}

	// If /proc/self/cpuset exists and is not /, we can assume that we are in a
	// form of container and use the content of cpuset xor-ed with the PID in
	// order get a reasonable machine global unique PID.
	b, err := ioutil.ReadFile("/proc/self/cpuset")
	if err == nil && len(b) > 1 {
		pid ^= int(crc32.ChecksumIEEE(b))
	}
}

// readMachineID generates a machine ID, derived from a platform-specific machine ID
// value, or else the machine's hostname, or else a randomly-generated number.
// It panics if all of these methods fail.
func readMachineID() []byte {
	id := make([]byte, 3)
	hid, err := readPlatformMachineID()
	if err != nil || len(hid) == 0 {
		hid, err = os.Hostname()
	}
	if err == nil && len(hid) != 0 {
		hw := sha256.New()
		hw.Write([]byte(hid))
		copy(id, hw.Sum(nil))
	} else {
		// Fallback to rand number if machine id can't be gathered
		if _, randErr := rand.Reader.Read(id); randErr != nil {
			panic(fmt.Errorf("xid: cannot get hostname nor generate a random number: %v; %v", err, randErr))
		}
	}
	return id
}

// randInt generates a random uint32
func randInt() uint32 {
	b := make([]byte, 3)
	if _, err := rand.Reader.Read(b); err != nil {
		panic(fmt.Errorf("xid: cannot generate random number: %v;", err))
	}
	return uint32(b[0])<<16 | uint32(b[1])<<8 | uint32(b[2])
}

// New generates a globally unique ID
func New() ID {
	return NewWithTime(time.Now())
}

// NewWithTime generates a globally unique ID with the passed in time
func NewWithTime(t time.Time) ID {
	var id ID
	// Timestamp, 4 bytes, big endian
	binary.BigEndian.PutUint32(id[:], uint32(t.Unix()))
	// Machine ID, 3 bytes
	id[4] = machineID[0]
	id[5] = machineID[1]
	id[6] = machineID[2]
	// Pid, 2 bytes, specs don't specify endianness, but we use big endian.
	id[7] = byte(pid >> 8)
	id[8] = byte(pid)
	// Increment, 3 bytes, big endian
	i := atomic.AddUint32(&objectIDCounter, 1)
	id[9] = byte(i >> 16)
	id[10] = byte(i >> 8)
	id[11] = byte(i)
	return id
}

// FromString reads an ID from its string representation
func FromString(id string) (ID, error) {
	i := &ID{}
	err := i.UnmarshalText([]byte(id))
	return *i, err
}

// String returns a base32 hex lowercased with no padding representation of the id (char set is 0-9, a-v).
func (id ID) String() string {
	text := make([]byte, encodedLen)
	encode(text, id[:])
	return *(*string)(unsafe.Pointer(&text))
}

// Encode encodes the id using base32 encoding, writing 20 bytes to dst and return it.
func (id ID) Encode(dst []byte) []byte {
	encode(dst, id[:])
	return dst
}

// MarshalText implements encoding/text TextMarshaler interface
func (id ID) MarshalText() ([]byte, error) {
	text := make([]byte, encodedLen)
	encode(text, id[:])
	return text, nil
}

// MarshalJSON implements encoding/json Marshaler interface
func (id ID) MarshalJSON() ([]byte, error) {
	if id.IsNil() {
		return []byte("null"), nil
	}
	text := make([]byte, encodedLen+2)
	encode(text[1:encodedLen+1], id[:])
	text[0], text[encodedLen+1] = '"', '"'
	return text, nil
}

// encode by unrolling the stdlib base32 algorithm + removing all safe checks
func encode(dst, id []byte) {
	_ = dst[19]
	_ = id[11]

	dst[19] = encoding[(id[11]<<4)&0x1F]
	dst[18] = encoding[(id[11]>>1)&0x1F]
	dst[17] = encoding[(id[11]>>6)&0x1F|(id[10]<<2)&0x1F]
	dst[16] = encoding[id[10]>>3]
	dst[15] = encoding[id[9]&0x1F]
	dst[14] = encoding[(id[9]>>5)|(id[8]<<3)&0x1F]
	dst[13] = encoding[(id[8]>>2)&0x1F]
	dst[12] = encoding[id[8]>>7|(id[7]<<1)&0x1F]
	dst[11] = encoding[(id[7]>>4)&0x1F|(id[6]<<4)&0x1F]
	dst[10] = encoding[(id[6]>>1)&0x1F]
	dst[9] = encoding[(id[6]>>6)&0x1F|(id[5]<<2)&0x1F]
	dst[8] = encoding[id[5]>>3]
	dst[7] = encoding[id[4]&0x1F]
	dst[6] = encoding[id[4]>>5|(id[3]<<3)&0x1F]
	dst[5] = encoding[(id[3]>>2)&0x1F]
	dst[4] = encoding[id[3]>>7|(id[2]<<1)&0x1F]
	dst[3] = encoding[(id[2]>>4)&0x1F|(id[1]<<4)&0x1F]
	dst[2] = encoding[(id[1]>>1)&0x1F]
	dst[1] = encoding[(id[1]>>6)&0x1F|(id[0]<<2)&0x1F]
	dst[0] = encoding[id[0]>>3]
}

// UnmarshalText implements encoding/text TextUnmarshaler interface
func (id *ID) UnmarshalText(text []byte) error {
	if len(text) != encodedLen {
		return ErrInvalidID
	}
	for _, c := range text {
		if dec[c] == 0xFF {
			return ErrInvalidID
		}
	}
	if !decode(id, text) {
		*id = nilID
		return ErrInvalidID
	}
	return nil
}

// UnmarshalJSON implements encoding/json Unmarshaler interface
func (id *ID) UnmarshalJSON(b []byte) error {
	s := string(b)
	if s == "null" {
		*id = nilID
		return nil
	}
	// Check the slice length to prevent panic on passing it to UnmarshalText()
	if len(b) < 2 {
		return ErrInvalidID
	}
	return id.UnmarshalText(b[1 : len(b)-1])
}

// decode by unrolling the stdlib base32 algorithm + customized safe check.
func decode(id *ID, src []byte) bool {
	_ = src[19]
	_ = id[11]

	id[11] = dec[src[17]]<<6 | dec[src[18]]<<1 | dec[src[19]]>>4
	// check the last byte
	if encoding[(id[11]<<4)&0x1F] != src[19] {
		return false
	}
	id[10] = dec[src[16]]<<3 | dec[src[17]]>>2
	id[9] = dec[src[14]]<<5 | dec[src[15]]
	id[8] = dec[src[12]]<<7 | dec[src[13]]<<2 | dec[src[14]]>>3
	id[7] = dec[src[11]]<<4 | dec[src[12]]>>1
	id[6] = dec[src[9]]<<6 | dec[src[10]]<<1 | dec[src[11]]>>4
	id[5] = dec[src[8]]<<3 | dec[src[9]]>>2
	id[4] = dec[src[6]]<<5 | dec[src[7]]
	id[3] = dec[src[4]]<<7 | dec[src[5]]<<2 | dec[src[6]]>>3
	id[2] = dec[src[3]]<<4 | dec[src[4]]>>1
	id[1] = dec[src[1]]<<6 | dec[src[2]]<<1 | dec[src[3]]>>4
	id[0] = dec[src[0]]<<3 | dec[src[1]]>>2
	return true
}

// Time returns the timestamp part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ID) Time() time.Time {
	// First 4 bytes of ObjectId is 32-bit big-endian seconds from epoch.
	secs := int64(binary.BigEndian.Uint32(id[0:4]))
	return time.Unix(secs, 0)
}

// Machine returns the 3-byte machine id part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ID) Machine() []byte {
	return id[4:7]
}

// Pid returns the process id part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ID) Pid() uint16 {
	return binary.BigEndian.Uint16(id[7:9])
}

// Counter returns the incrementing value part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ID) Counter() int32 {
	b := id[9:12]
	// Counter is stored as big-endian 3-byte value
	return int32(uint32(b[0])<<16 | uint32(b[1])<<8 | uint32(b[2]))
}

// Value implements the driver.Valuer interface.
func (id ID) Value() (driver.Value, error) {
	if id.IsNil() {
		return nil, nil
	}
	b, err := id.MarshalText()
	return string(b), err
}

// Scan implements the sql.Scanner interface.
func (id *ID) Scan(value interface{}) (err error) {
	switch val := value.(type) {
	case string:
		return id.UnmarshalText([]byte(val))
	case []byte:
		return id.UnmarshalText(val)
	case nil:
		*id = nilID
		return nil
	default:
		return fmt.Errorf("xid: scanning unsupported type: %T", value)
	}
}

// IsNil Returns true if this is a "nil" ID
func (id ID) IsNil() bool {
	return id == nilID
}

// Alias of IsNil
func (id ID) IsZero() bool {
	return id.IsNil()
}

// NilID returns a zero value for `xid.ID`.
func NilID() ID {
	return nilID
}

// Bytes returns the byte array representation of `ID`
func (id ID) Bytes() []byte {
	return id[:]
}

// FromBytes convert the byte array representation of `ID` back to `ID`
func FromBytes(b []byte) (ID, error) {
	var id ID
	if len(b) != rawLen {
		return id, ErrInvalidID
	}
	copy(id[:], b)
	return id, nil
}

// Compare returns an integer comparing two IDs. It behaves just like `bytes.Compare`.
// The result will be 0 if two IDs are identical, -1 if current id is less than the other one,
// and 1 if current id is greater than the other.
func (id ID) Compare(other ID) int {
	return bytes.Compare(id[:], other[:])
}

type sorter []ID

func (s sorter) Len() int {
	return len(s)
}

func (s sorter) Less(i, j int) bool {
	return s[i].Compare(s[j]) < 0
}

func (s sorter) Swap(i, j int) {
	s[i], s[j] = s[j], s[i]
}

// Sort sorts an array of IDs inplace.
// It works by wrapping `[]ID` and use `sort.Sort`.
func Sort(ids []ID) {
	sort.Sort(sorter(ids))
}