summaryrefslogtreecommitdiffstats
path: root/vendor/modernc.org/mathutil/primes.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/modernc.org/mathutil/primes.go')
-rw-r--r--vendor/modernc.org/mathutil/primes.go331
1 files changed, 331 insertions, 0 deletions
diff --git a/vendor/modernc.org/mathutil/primes.go b/vendor/modernc.org/mathutil/primes.go
new file mode 100644
index 00000000..ec1e5f5a
--- /dev/null
+++ b/vendor/modernc.org/mathutil/primes.go
@@ -0,0 +1,331 @@
+// Copyright (c) 2014 The mathutil Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package mathutil // import "modernc.org/mathutil"
+
+import (
+ "math"
+)
+
+// IsPrimeUint16 returns true if n is prime. Typical run time is few ns.
+func IsPrimeUint16(n uint16) bool {
+ return n > 0 && primes16[n-1] == 1
+}
+
+// NextPrimeUint16 returns first prime > n and true if successful or an
+// undefined value and false if there is no next prime in the uint16 limits.
+// Typical run time is few ns.
+func NextPrimeUint16(n uint16) (p uint16, ok bool) {
+ return n + uint16(primes16[n]), n < 65521
+}
+
+// IsPrime returns true if n is prime. Typical run time is about 100 ns.
+func IsPrime(n uint32) bool {
+ switch {
+ case n&1 == 0:
+ return n == 2
+ case n%3 == 0:
+ return n == 3
+ case n%5 == 0:
+ return n == 5
+ case n%7 == 0:
+ return n == 7
+ case n%11 == 0:
+ return n == 11
+ case n%13 == 0:
+ return n == 13
+ case n%17 == 0:
+ return n == 17
+ case n%19 == 0:
+ return n == 19
+ case n%23 == 0:
+ return n == 23
+ case n%29 == 0:
+ return n == 29
+ case n%31 == 0:
+ return n == 31
+ case n%37 == 0:
+ return n == 37
+ case n%41 == 0:
+ return n == 41
+ case n%43 == 0:
+ return n == 43
+ case n%47 == 0:
+ return n == 47
+ case n%53 == 0:
+ return n == 53 // Benchmarked optimum
+ case n < 65536:
+ // use table data
+ return IsPrimeUint16(uint16(n))
+ default:
+ mod := ModPowUint32(2, (n+1)/2, n)
+ if mod != 2 && mod != n-2 {
+ return false
+ }
+ blk := &lohi[n>>24]
+ lo, hi := blk.lo, blk.hi
+ for lo <= hi {
+ index := (lo + hi) >> 1
+ liar := liars[index]
+ switch {
+ case n > liar:
+ lo = index + 1
+ case n < liar:
+ hi = index - 1
+ default:
+ return false
+ }
+ }
+ return true
+ }
+}
+
+// IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs.
+//
+// SPRP bases: http://miller-rabin.appspot.com
+func IsPrimeUint64(n uint64) bool {
+ switch {
+ case n%2 == 0:
+ return n == 2
+ case n%3 == 0:
+ return n == 3
+ case n%5 == 0:
+ return n == 5
+ case n%7 == 0:
+ return n == 7
+ case n%11 == 0:
+ return n == 11
+ case n%13 == 0:
+ return n == 13
+ case n%17 == 0:
+ return n == 17
+ case n%19 == 0:
+ return n == 19
+ case n%23 == 0:
+ return n == 23
+ case n%29 == 0:
+ return n == 29
+ case n%31 == 0:
+ return n == 31
+ case n%37 == 0:
+ return n == 37
+ case n%41 == 0:
+ return n == 41
+ case n%43 == 0:
+ return n == 43
+ case n%47 == 0:
+ return n == 47
+ case n%53 == 0:
+ return n == 53
+ case n%59 == 0:
+ return n == 59
+ case n%61 == 0:
+ return n == 61
+ case n%67 == 0:
+ return n == 67
+ case n%71 == 0:
+ return n == 71
+ case n%73 == 0:
+ return n == 73
+ case n%79 == 0:
+ return n == 79
+ case n%83 == 0:
+ return n == 83
+ case n%89 == 0:
+ return n == 89 // Benchmarked optimum
+ case n <= math.MaxUint16:
+ return IsPrimeUint16(uint16(n))
+ case n <= math.MaxUint32:
+ return ProbablyPrimeUint32(uint32(n), 11000544) &&
+ ProbablyPrimeUint32(uint32(n), 31481107)
+ case n < 105936894253:
+ return ProbablyPrimeUint64_32(n, 2) &&
+ ProbablyPrimeUint64_32(n, 1005905886) &&
+ ProbablyPrimeUint64_32(n, 1340600841)
+ case n < 31858317218647:
+ return ProbablyPrimeUint64_32(n, 2) &&
+ ProbablyPrimeUint64_32(n, 642735) &&
+ ProbablyPrimeUint64_32(n, 553174392) &&
+ ProbablyPrimeUint64_32(n, 3046413974)
+ case n < 3071837692357849:
+ return ProbablyPrimeUint64_32(n, 2) &&
+ ProbablyPrimeUint64_32(n, 75088) &&
+ ProbablyPrimeUint64_32(n, 642735) &&
+ ProbablyPrimeUint64_32(n, 203659041) &&
+ ProbablyPrimeUint64_32(n, 3613982119)
+ default:
+ return ProbablyPrimeUint64_32(n, 2) &&
+ ProbablyPrimeUint64_32(n, 325) &&
+ ProbablyPrimeUint64_32(n, 9375) &&
+ ProbablyPrimeUint64_32(n, 28178) &&
+ ProbablyPrimeUint64_32(n, 450775) &&
+ ProbablyPrimeUint64_32(n, 9780504) &&
+ ProbablyPrimeUint64_32(n, 1795265022)
+ }
+}
+
+// NextPrime returns first prime > n and true if successful or an undefined value and false if there
+// is no next prime in the uint32 limits. Typical run time is about 2 µs.
+func NextPrime(n uint32) (p uint32, ok bool) {
+ switch {
+ case n < 65521:
+ p16, _ := NextPrimeUint16(uint16(n))
+ return uint32(p16), true
+ case n >= math.MaxUint32-4:
+ return
+ }
+
+ n++
+ var d0, d uint32
+ switch mod := n % 6; mod {
+ case 0:
+ d0, d = 1, 4
+ case 1:
+ d = 4
+ case 2, 3, 4:
+ d0, d = 5-mod, 2
+ case 5:
+ d = 2
+ }
+
+ p = n + d0
+ if p < n { // overflow
+ return
+ }
+
+ for {
+ if IsPrime(p) {
+ return p, true
+ }
+
+ p0 := p
+ p += d
+ if p < p0 { // overflow
+ break
+ }
+
+ d ^= 6
+ }
+ return
+}
+
+// NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there
+// is no next prime in the uint64 limits. Typical run time is in hundreds of µs.
+func NextPrimeUint64(n uint64) (p uint64, ok bool) {
+ switch {
+ case n < 65521:
+ p16, _ := NextPrimeUint16(uint16(n))
+ return uint64(p16), true
+ case n >= 18446744073709551557: // last uint64 prime
+ return
+ }
+
+ n++
+ var d0, d uint64
+ switch mod := n % 6; mod {
+ case 0:
+ d0, d = 1, 4
+ case 1:
+ d = 4
+ case 2, 3, 4:
+ d0, d = 5-mod, 2
+ case 5:
+ d = 2
+ }
+
+ p = n + d0
+ if p < n { // overflow
+ return
+ }
+
+ for {
+ if ok = IsPrimeUint64(p); ok {
+ break
+ }
+
+ p0 := p
+ p += d
+ if p < p0 { // overflow
+ break
+ }
+
+ d ^= 6
+ }
+ return
+}
+
+// FactorTerm is one term of an integer factorization.
+type FactorTerm struct {
+ Prime uint32 // The divisor
+ Power uint32 // Term == Prime^Power
+}
+
+// FactorTerms represent a factorization of an integer
+type FactorTerms []FactorTerm
+
+// FactorInt returns prime factorization of n > 1 or nil otherwise.
+// Resulting factors are ordered by Prime. Typical run time is few µs.
+func FactorInt(n uint32) (f FactorTerms) {
+ switch {
+ case n < 2:
+ return
+ case IsPrime(n):
+ return []FactorTerm{{n, 1}}
+ }
+
+ f, w := make([]FactorTerm, 9), 0
+ for p := 2; p < len(primes16); p += int(primes16[p]) {
+ if uint(p*p) > uint(n) {
+ break
+ }
+
+ power := uint32(0)
+ for n%uint32(p) == 0 {
+ n /= uint32(p)
+ power++
+ }
+ if power != 0 {
+ f[w] = FactorTerm{uint32(p), power}
+ w++
+ }
+ if n == 1 {
+ break
+ }
+ }
+ if n != 1 {
+ f[w] = FactorTerm{n, 1}
+ w++
+ }
+ return f[:w]
+}
+
+// PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a
+// product of max 'max' primorials. The slice is not sorted.
+//
+// See also: http://en.wikipedia.org/wiki/Primorial
+func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) {
+ lo64, hi64 := int64(lo), int64(hi)
+ if max > 31 { // N/A
+ max = 31
+ }
+
+ var f func(int64, int64, uint32)
+ f = func(n, p int64, emax uint32) {
+ e := uint32(1)
+ for n <= hi64 && e <= emax {
+ n *= p
+ if n >= lo64 && n <= hi64 {
+ r = append(r, uint32(n))
+ }
+ if n < hi64 {
+ p, _ := NextPrime(uint32(p))
+ f(n, int64(p), e)
+ }
+ e++
+ }
+ }
+
+ f(1, 2, max)
+ return
+}