diff options
Diffstat (limited to 'vendor/golang.org/x/image/ccitt/reader.go')
-rw-r--r-- | vendor/golang.org/x/image/ccitt/reader.go | 795 |
1 files changed, 0 insertions, 795 deletions
diff --git a/vendor/golang.org/x/image/ccitt/reader.go b/vendor/golang.org/x/image/ccitt/reader.go deleted file mode 100644 index 340de053..00000000 --- a/vendor/golang.org/x/image/ccitt/reader.go +++ /dev/null @@ -1,795 +0,0 @@ -// Copyright 2019 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -//go:generate go run gen.go - -// Package ccitt implements a CCITT (fax) image decoder. -package ccitt - -import ( - "encoding/binary" - "errors" - "image" - "io" - "math/bits" -) - -var ( - errIncompleteCode = errors.New("ccitt: incomplete code") - errInvalidBounds = errors.New("ccitt: invalid bounds") - errInvalidCode = errors.New("ccitt: invalid code") - errInvalidMode = errors.New("ccitt: invalid mode") - errInvalidOffset = errors.New("ccitt: invalid offset") - errMissingEOL = errors.New("ccitt: missing End-of-Line") - errRunLengthOverflowsWidth = errors.New("ccitt: run length overflows width") - errRunLengthTooLong = errors.New("ccitt: run length too long") - errUnsupportedMode = errors.New("ccitt: unsupported mode") - errUnsupportedSubFormat = errors.New("ccitt: unsupported sub-format") - errUnsupportedWidth = errors.New("ccitt: unsupported width") -) - -// Order specifies the bit ordering in a CCITT data stream. -type Order uint32 - -const ( - // LSB means Least Significant Bits first. - LSB Order = iota - // MSB means Most Significant Bits first. - MSB -) - -// SubFormat represents that the CCITT format consists of a number of -// sub-formats. Decoding or encoding a CCITT data stream requires knowing the -// sub-format context. It is not represented in the data stream per se. -type SubFormat uint32 - -const ( - Group3 SubFormat = iota - Group4 -) - -// AutoDetectHeight is passed as the height argument to NewReader to indicate -// that the image height (the number of rows) is not known in advance. -const AutoDetectHeight = -1 - -// Options are optional parameters. -type Options struct { - // Align means that some variable-bit-width codes are byte-aligned. - Align bool - // Invert means that black is the 1 bit or 0xFF byte, and white is 0. - Invert bool -} - -// maxWidth is the maximum (inclusive) supported width. This is a limitation of -// this implementation, to guard against integer overflow, and not anything -// inherent to the CCITT format. -const maxWidth = 1 << 20 - -func invertBytes(b []byte) { - for i, c := range b { - b[i] = ^c - } -} - -func reverseBitsWithinBytes(b []byte) { - for i, c := range b { - b[i] = bits.Reverse8(c) - } -} - -// highBits writes to dst (1 bit per pixel, most significant bit first) the -// high (0x80) bits from src (1 byte per pixel). It returns the number of bytes -// written and read such that dst[:d] is the packed form of src[:s]. -// -// For example, if src starts with the 8 bytes [0x7D, 0x7E, 0x7F, 0x80, 0x81, -// 0x82, 0x00, 0xFF] then 0x1D will be written to dst[0]. -// -// If src has (8 * len(dst)) or more bytes then only len(dst) bytes are -// written, (8 * len(dst)) bytes are read, and invert is ignored. -// -// Otherwise, if len(src) is not a multiple of 8 then the final byte written to -// dst is padded with 1 bits (if invert is true) or 0 bits. If inverted, the 1s -// are typically temporary, e.g. they will be flipped back to 0s by an -// invertBytes call in the highBits caller, reader.Read. -func highBits(dst []byte, src []byte, invert bool) (d int, s int) { - // Pack as many complete groups of 8 src bytes as we can. - n := len(src) / 8 - if n > len(dst) { - n = len(dst) - } - dstN := dst[:n] - for i := range dstN { - src8 := src[i*8 : i*8+8] - dstN[i] = ((src8[0] & 0x80) >> 0) | - ((src8[1] & 0x80) >> 1) | - ((src8[2] & 0x80) >> 2) | - ((src8[3] & 0x80) >> 3) | - ((src8[4] & 0x80) >> 4) | - ((src8[5] & 0x80) >> 5) | - ((src8[6] & 0x80) >> 6) | - ((src8[7] & 0x80) >> 7) - } - d, s = n, 8*n - dst, src = dst[d:], src[s:] - - // Pack up to 7 remaining src bytes, if there's room in dst. - if (len(dst) > 0) && (len(src) > 0) { - dstByte := byte(0) - if invert { - dstByte = 0xFF >> uint(len(src)) - } - for n, srcByte := range src { - dstByte |= (srcByte & 0x80) >> uint(n) - } - dst[0] = dstByte - d, s = d+1, s+len(src) - } - return d, s -} - -type bitReader struct { - r io.Reader - - // readErr is the error returned from the most recent r.Read call. As the - // io.Reader documentation says, when r.Read returns (n, err), "always - // process the n > 0 bytes returned before considering the error err". - readErr error - - // order is whether to process r's bytes LSB first or MSB first. - order Order - - // The high nBits bits of the bits field hold upcoming bits in MSB order. - bits uint64 - nBits uint32 - - // bytes[br:bw] holds bytes read from r but not yet loaded into bits. - br uint32 - bw uint32 - bytes [1024]uint8 -} - -func (b *bitReader) alignToByteBoundary() { - n := b.nBits & 7 - b.bits <<= n - b.nBits -= n -} - -// nextBitMaxNBits is the maximum possible value of bitReader.nBits after a -// bitReader.nextBit call, provided that bitReader.nBits was not more than this -// value before that call. -// -// Note that the decode function can unread bits, which can temporarily set the -// bitReader.nBits value above nextBitMaxNBits. -const nextBitMaxNBits = 31 - -func (b *bitReader) nextBit() (uint64, error) { - for { - if b.nBits > 0 { - bit := b.bits >> 63 - b.bits <<= 1 - b.nBits-- - return bit, nil - } - - if available := b.bw - b.br; available >= 4 { - // Read 32 bits, even though b.bits is a uint64, since the decode - // function may need to unread up to maxCodeLength bits, putting - // them back in the remaining (64 - 32) bits. TestMaxCodeLength - // checks that the generated maxCodeLength constant fits. - // - // If changing the Uint32 call, also change nextBitMaxNBits. - b.bits = uint64(binary.BigEndian.Uint32(b.bytes[b.br:])) << 32 - b.br += 4 - b.nBits = 32 - continue - } else if available > 0 { - b.bits = uint64(b.bytes[b.br]) << (7 * 8) - b.br++ - b.nBits = 8 - continue - } - - if b.readErr != nil { - return 0, b.readErr - } - - n, err := b.r.Read(b.bytes[:]) - b.br = 0 - b.bw = uint32(n) - b.readErr = err - - if b.order != MSB { - reverseBitsWithinBytes(b.bytes[:b.bw]) - } - } -} - -func decode(b *bitReader, decodeTable [][2]int16) (uint32, error) { - nBitsRead, bitsRead, state := uint32(0), uint64(0), int32(1) - for { - bit, err := b.nextBit() - if err != nil { - if err == io.EOF { - err = errIncompleteCode - } - return 0, err - } - bitsRead |= bit << (63 - nBitsRead) - nBitsRead++ - - // The "&1" is redundant, but can eliminate a bounds check. - state = int32(decodeTable[state][bit&1]) - if state < 0 { - return uint32(^state), nil - } else if state == 0 { - // Unread the bits we've read, then return errInvalidCode. - b.bits = (b.bits >> nBitsRead) | bitsRead - b.nBits += nBitsRead - return 0, errInvalidCode - } - } -} - -// decodeEOL decodes the 12-bit EOL code 0000_0000_0001. -func decodeEOL(b *bitReader) error { - nBitsRead, bitsRead := uint32(0), uint64(0) - for { - bit, err := b.nextBit() - if err != nil { - if err == io.EOF { - err = errMissingEOL - } - return err - } - bitsRead |= bit << (63 - nBitsRead) - nBitsRead++ - - if nBitsRead < 12 { - if bit&1 == 0 { - continue - } - } else if bit&1 != 0 { - return nil - } - - // Unread the bits we've read, then return errMissingEOL. - b.bits = (b.bits >> nBitsRead) | bitsRead - b.nBits += nBitsRead - return errMissingEOL - } -} - -type reader struct { - br bitReader - subFormat SubFormat - - // width is the image width in pixels. - width int - - // rowsRemaining starts at the image height in pixels, when the reader is - // driven through the io.Reader interface, and decrements to zero as rows - // are decoded. Alternatively, it may be negative if the image height is - // not known in advance at the time of the NewReader call. - // - // When driven through DecodeIntoGray, this field is unused. - rowsRemaining int - - // curr and prev hold the current and previous rows. Each element is either - // 0x00 (black) or 0xFF (white). - // - // prev may be nil, when processing the first row. - curr []byte - prev []byte - - // ri is the read index. curr[:ri] are those bytes of curr that have been - // passed along via the Read method. - // - // When the reader is driven through DecodeIntoGray, instead of through the - // io.Reader interface, this field is unused. - ri int - - // wi is the write index. curr[:wi] are those bytes of curr that have - // already been decoded via the decodeRow method. - // - // What this implementation calls wi is roughly equivalent to what the spec - // calls the a0 index. - wi int - - // These fields are copied from the *Options (which may be nil). - align bool - invert bool - - // atStartOfRow is whether we have just started the row. Some parts of the - // spec say to treat this situation as if "wi = -1". - atStartOfRow bool - - // penColorIsWhite is whether the next run is black or white. - penColorIsWhite bool - - // seenStartOfImage is whether we've called the startDecode method. - seenStartOfImage bool - - // truncated is whether the input is missing the final 6 consecutive EOL's - // (for Group3) or 2 consecutive EOL's (for Group4). Omitting that trailer - // (but otherwise padding to a byte boundary, with either all 0 bits or all - // 1 bits) is invalid according to the spec, but happens in practice when - // exporting from Adobe Acrobat to TIFF + CCITT. This package silently - // ignores the format error for CCITT input that has been truncated in that - // fashion, returning the full decoded image. - // - // Detecting trailer truncation (just after the final row of pixels) - // requires knowing which row is the final row, and therefore does not - // trigger if the image height is not known in advance. - truncated bool - - // readErr is a sticky error for the Read method. - readErr error -} - -func (z *reader) Read(p []byte) (int, error) { - if z.readErr != nil { - return 0, z.readErr - } - originalP := p - - for len(p) > 0 { - // Allocate buffers (and decode any start-of-image codes), if - // processing the first or second row. - if z.curr == nil { - if !z.seenStartOfImage { - if z.readErr = z.startDecode(); z.readErr != nil { - break - } - z.atStartOfRow = true - } - z.curr = make([]byte, z.width) - } - - // Decode the next row, if necessary. - if z.atStartOfRow { - if z.rowsRemaining < 0 { - // We do not know the image height in advance. See if the next - // code is an EOL. If it is, it is consumed. If it isn't, the - // bitReader shouldn't advance along the bit stream, and we - // simply decode another row of pixel data. - // - // For the Group4 subFormat, we may need to align to a byte - // boundary. For the Group3 subFormat, the previous z.decodeRow - // call (or z.startDecode call) has already consumed one of the - // 6 consecutive EOL's. The next EOL is actually the second of - // 6, in the middle, and we shouldn't align at that point. - if z.align && (z.subFormat == Group4) { - z.br.alignToByteBoundary() - } - - if err := z.decodeEOL(); err == errMissingEOL { - // No-op. It's another row of pixel data. - } else if err != nil { - z.readErr = err - break - } else { - if z.readErr = z.finishDecode(true); z.readErr != nil { - break - } - z.readErr = io.EOF - break - } - - } else if z.rowsRemaining == 0 { - // We do know the image height in advance, and we have already - // decoded exactly that many rows. - if z.readErr = z.finishDecode(false); z.readErr != nil { - break - } - z.readErr = io.EOF - break - - } else { - z.rowsRemaining-- - } - - if z.readErr = z.decodeRow(z.rowsRemaining == 0); z.readErr != nil { - break - } - } - - // Pack from z.curr (1 byte per pixel) to p (1 bit per pixel). - packD, packS := highBits(p, z.curr[z.ri:], z.invert) - p = p[packD:] - z.ri += packS - - // Prepare to decode the next row, if necessary. - if z.ri == len(z.curr) { - z.ri, z.curr, z.prev = 0, z.prev, z.curr - z.atStartOfRow = true - } - } - - n := len(originalP) - len(p) - if z.invert { - invertBytes(originalP[:n]) - } - return n, z.readErr -} - -func (z *reader) penColor() byte { - if z.penColorIsWhite { - return 0xFF - } - return 0x00 -} - -func (z *reader) startDecode() error { - switch z.subFormat { - case Group3: - if err := z.decodeEOL(); err != nil { - return err - } - - case Group4: - // No-op. - - default: - return errUnsupportedSubFormat - } - - z.seenStartOfImage = true - return nil -} - -func (z *reader) finishDecode(alreadySeenEOL bool) error { - numberOfEOLs := 0 - switch z.subFormat { - case Group3: - if z.truncated { - return nil - } - // The stream ends with a RTC (Return To Control) of 6 consecutive - // EOL's, but we should have already just seen an EOL, either in - // z.startDecode (for a zero-height image) or in z.decodeRow. - numberOfEOLs = 5 - - case Group4: - autoDetectHeight := z.rowsRemaining < 0 - if autoDetectHeight { - // Aligning to a byte boundary was already handled by reader.Read. - } else if z.align { - z.br.alignToByteBoundary() - } - // The stream ends with two EOL's. If the first one is missing, and we - // had an explicit image height, we just assume that the trailing two - // EOL's were truncated and return a nil error. - if err := z.decodeEOL(); err != nil { - if (err == errMissingEOL) && !autoDetectHeight { - z.truncated = true - return nil - } - return err - } - numberOfEOLs = 1 - - default: - return errUnsupportedSubFormat - } - - if alreadySeenEOL { - numberOfEOLs-- - } - for ; numberOfEOLs > 0; numberOfEOLs-- { - if err := z.decodeEOL(); err != nil { - return err - } - } - return nil -} - -func (z *reader) decodeEOL() error { - return decodeEOL(&z.br) -} - -func (z *reader) decodeRow(finalRow bool) error { - z.wi = 0 - z.atStartOfRow = true - z.penColorIsWhite = true - - if z.align { - z.br.alignToByteBoundary() - } - - switch z.subFormat { - case Group3: - for ; z.wi < len(z.curr); z.atStartOfRow = false { - if err := z.decodeRun(); err != nil { - return err - } - } - err := z.decodeEOL() - if finalRow && (err == errMissingEOL) { - z.truncated = true - return nil - } - return err - - case Group4: - for ; z.wi < len(z.curr); z.atStartOfRow = false { - mode, err := decode(&z.br, modeDecodeTable[:]) - if err != nil { - return err - } - rm := readerMode{} - if mode < uint32(len(readerModes)) { - rm = readerModes[mode] - } - if rm.function == nil { - return errInvalidMode - } - if err := rm.function(z, rm.arg); err != nil { - return err - } - } - return nil - } - - return errUnsupportedSubFormat -} - -func (z *reader) decodeRun() error { - table := blackDecodeTable[:] - if z.penColorIsWhite { - table = whiteDecodeTable[:] - } - - total := 0 - for { - n, err := decode(&z.br, table) - if err != nil { - return err - } - if n > maxWidth { - panic("unreachable") - } - total += int(n) - if total > maxWidth { - return errRunLengthTooLong - } - // Anything 0x3F or below is a terminal code. - if n <= 0x3F { - break - } - } - - if total > (len(z.curr) - z.wi) { - return errRunLengthOverflowsWidth - } - dst := z.curr[z.wi : z.wi+total] - penColor := z.penColor() - for i := range dst { - dst[i] = penColor - } - z.wi += total - z.penColorIsWhite = !z.penColorIsWhite - - return nil -} - -// The various modes' semantics are based on determining a row of pixels' -// "changing elements": those pixels whose color differs from the one on its -// immediate left. -// -// The row above the first row is implicitly all white. Similarly, the column -// to the left of the first column is implicitly all white. -// -// For example, here's Figure 1 in "ITU-T Recommendation T.6", where the -// current and previous rows contain black (B) and white (w) pixels. The a? -// indexes point into curr, the b? indexes point into prev. -// -// b1 b2 -// v v -// prev: BBBBBwwwwwBBBwwwww -// curr: BBBwwwwwBBBBBBwwww -// ^ ^ ^ -// a0 a1 a2 -// -// a0 is the "reference element" or current decoder position, roughly -// equivalent to what this implementation calls reader.wi. -// -// a1 is the next changing element to the right of a0, on the "coding line" -// (the current row). -// -// a2 is the next changing element to the right of a1, again on curr. -// -// b1 is the first changing element on the "reference line" (the previous row) -// to the right of a0 and of opposite color to a0. -// -// b2 is the next changing element to the right of b1, again on prev. -// -// The various modes calculate a1 (and a2, for modeH): -// - modePass calculates that a1 is at or to the right of b2. -// - modeH calculates a1 and a2 without considering b1 or b2. -// - modeV* calculates a1 to be b1 plus an adjustment (between -3 and +3). - -const ( - findB1 = false - findB2 = true -) - -// findB finds either the b1 or b2 value. -func (z *reader) findB(whichB bool) int { - // The initial row is a special case. The previous row is implicitly all - // white, so that there are no changing pixel elements. We return b1 or b2 - // to be at the end of the row. - if len(z.prev) != len(z.curr) { - return len(z.curr) - } - - i := z.wi - - if z.atStartOfRow { - // a0 is implicitly at -1, on a white pixel. b1 is the first black - // pixel in the previous row. b2 is the first white pixel after that. - for ; (i < len(z.prev)) && (z.prev[i] == 0xFF); i++ { - } - if whichB == findB2 { - for ; (i < len(z.prev)) && (z.prev[i] == 0x00); i++ { - } - } - return i - } - - // As per figure 1 above, assume that the current pen color is white. - // First, walk past every contiguous black pixel in prev, starting at a0. - oppositeColor := ^z.penColor() - for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ { - } - - // Then walk past every contiguous white pixel. - penColor := ^oppositeColor - for ; (i < len(z.prev)) && (z.prev[i] == penColor); i++ { - } - - // We're now at a black pixel (or at the end of the row). That's b1. - if whichB == findB2 { - // If we're looking for b2, walk past every contiguous black pixel - // again. - oppositeColor := ^penColor - for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ { - } - } - - return i -} - -type readerMode struct { - function func(z *reader, arg int) error - arg int -} - -var readerModes = [...]readerMode{ - modePass: {function: readerModePass}, - modeH: {function: readerModeH}, - modeV0: {function: readerModeV, arg: +0}, - modeVR1: {function: readerModeV, arg: +1}, - modeVR2: {function: readerModeV, arg: +2}, - modeVR3: {function: readerModeV, arg: +3}, - modeVL1: {function: readerModeV, arg: -1}, - modeVL2: {function: readerModeV, arg: -2}, - modeVL3: {function: readerModeV, arg: -3}, - modeExt: {function: readerModeExt}, -} - -func readerModePass(z *reader, arg int) error { - b2 := z.findB(findB2) - if (b2 < z.wi) || (len(z.curr) < b2) { - return errInvalidOffset - } - dst := z.curr[z.wi:b2] - penColor := z.penColor() - for i := range dst { - dst[i] = penColor - } - z.wi = b2 - return nil -} - -func readerModeH(z *reader, arg int) error { - // The first iteration finds a1. The second finds a2. - for i := 0; i < 2; i++ { - if err := z.decodeRun(); err != nil { - return err - } - } - return nil -} - -func readerModeV(z *reader, arg int) error { - a1 := z.findB(findB1) + arg - if (a1 < z.wi) || (len(z.curr) < a1) { - return errInvalidOffset - } - dst := z.curr[z.wi:a1] - penColor := z.penColor() - for i := range dst { - dst[i] = penColor - } - z.wi = a1 - z.penColorIsWhite = !z.penColorIsWhite - return nil -} - -func readerModeExt(z *reader, arg int) error { - return errUnsupportedMode -} - -// DecodeIntoGray decodes the CCITT-formatted data in r into dst. -// -// It returns an error if dst's width and height don't match the implied width -// and height of CCITT-formatted data. -func DecodeIntoGray(dst *image.Gray, r io.Reader, order Order, sf SubFormat, opts *Options) error { - bounds := dst.Bounds() - if (bounds.Dx() < 0) || (bounds.Dy() < 0) { - return errInvalidBounds - } - if bounds.Dx() > maxWidth { - return errUnsupportedWidth - } - - z := reader{ - br: bitReader{r: r, order: order}, - subFormat: sf, - align: (opts != nil) && opts.Align, - invert: (opts != nil) && opts.Invert, - width: bounds.Dx(), - } - if err := z.startDecode(); err != nil { - return err - } - - width := bounds.Dx() - for y := bounds.Min.Y; y < bounds.Max.Y; y++ { - p := (y - bounds.Min.Y) * dst.Stride - z.curr = dst.Pix[p : p+width] - if err := z.decodeRow(y+1 == bounds.Max.Y); err != nil { - return err - } - z.curr, z.prev = nil, z.curr - } - - if err := z.finishDecode(false); err != nil { - return err - } - - if z.invert { - for y := bounds.Min.Y; y < bounds.Max.Y; y++ { - p := (y - bounds.Min.Y) * dst.Stride - invertBytes(dst.Pix[p : p+width]) - } - } - - return nil -} - -// NewReader returns an io.Reader that decodes the CCITT-formatted data in r. -// The resultant byte stream is one bit per pixel (MSB first), with 1 meaning -// white and 0 meaning black. Each row in the result is byte-aligned. -// -// A negative height, such as passing AutoDetectHeight, means that the image -// height is not known in advance. A negative width is invalid. -func NewReader(r io.Reader, order Order, sf SubFormat, width int, height int, opts *Options) io.Reader { - readErr := error(nil) - if width < 0 { - readErr = errInvalidBounds - } else if width > maxWidth { - readErr = errUnsupportedWidth - } - - return &reader{ - br: bitReader{r: r, order: order}, - subFormat: sf, - align: (opts != nil) && opts.Align, - invert: (opts != nil) && opts.Invert, - width: width, - rowsRemaining: height, - readErr: readErr, - } -} |