summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/image/ccitt/reader.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/image/ccitt/reader.go')
-rw-r--r--vendor/golang.org/x/image/ccitt/reader.go795
1 files changed, 795 insertions, 0 deletions
diff --git a/vendor/golang.org/x/image/ccitt/reader.go b/vendor/golang.org/x/image/ccitt/reader.go
new file mode 100644
index 00000000..340de053
--- /dev/null
+++ b/vendor/golang.org/x/image/ccitt/reader.go
@@ -0,0 +1,795 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate go run gen.go
+
+// Package ccitt implements a CCITT (fax) image decoder.
+package ccitt
+
+import (
+ "encoding/binary"
+ "errors"
+ "image"
+ "io"
+ "math/bits"
+)
+
+var (
+ errIncompleteCode = errors.New("ccitt: incomplete code")
+ errInvalidBounds = errors.New("ccitt: invalid bounds")
+ errInvalidCode = errors.New("ccitt: invalid code")
+ errInvalidMode = errors.New("ccitt: invalid mode")
+ errInvalidOffset = errors.New("ccitt: invalid offset")
+ errMissingEOL = errors.New("ccitt: missing End-of-Line")
+ errRunLengthOverflowsWidth = errors.New("ccitt: run length overflows width")
+ errRunLengthTooLong = errors.New("ccitt: run length too long")
+ errUnsupportedMode = errors.New("ccitt: unsupported mode")
+ errUnsupportedSubFormat = errors.New("ccitt: unsupported sub-format")
+ errUnsupportedWidth = errors.New("ccitt: unsupported width")
+)
+
+// Order specifies the bit ordering in a CCITT data stream.
+type Order uint32
+
+const (
+ // LSB means Least Significant Bits first.
+ LSB Order = iota
+ // MSB means Most Significant Bits first.
+ MSB
+)
+
+// SubFormat represents that the CCITT format consists of a number of
+// sub-formats. Decoding or encoding a CCITT data stream requires knowing the
+// sub-format context. It is not represented in the data stream per se.
+type SubFormat uint32
+
+const (
+ Group3 SubFormat = iota
+ Group4
+)
+
+// AutoDetectHeight is passed as the height argument to NewReader to indicate
+// that the image height (the number of rows) is not known in advance.
+const AutoDetectHeight = -1
+
+// Options are optional parameters.
+type Options struct {
+ // Align means that some variable-bit-width codes are byte-aligned.
+ Align bool
+ // Invert means that black is the 1 bit or 0xFF byte, and white is 0.
+ Invert bool
+}
+
+// maxWidth is the maximum (inclusive) supported width. This is a limitation of
+// this implementation, to guard against integer overflow, and not anything
+// inherent to the CCITT format.
+const maxWidth = 1 << 20
+
+func invertBytes(b []byte) {
+ for i, c := range b {
+ b[i] = ^c
+ }
+}
+
+func reverseBitsWithinBytes(b []byte) {
+ for i, c := range b {
+ b[i] = bits.Reverse8(c)
+ }
+}
+
+// highBits writes to dst (1 bit per pixel, most significant bit first) the
+// high (0x80) bits from src (1 byte per pixel). It returns the number of bytes
+// written and read such that dst[:d] is the packed form of src[:s].
+//
+// For example, if src starts with the 8 bytes [0x7D, 0x7E, 0x7F, 0x80, 0x81,
+// 0x82, 0x00, 0xFF] then 0x1D will be written to dst[0].
+//
+// If src has (8 * len(dst)) or more bytes then only len(dst) bytes are
+// written, (8 * len(dst)) bytes are read, and invert is ignored.
+//
+// Otherwise, if len(src) is not a multiple of 8 then the final byte written to
+// dst is padded with 1 bits (if invert is true) or 0 bits. If inverted, the 1s
+// are typically temporary, e.g. they will be flipped back to 0s by an
+// invertBytes call in the highBits caller, reader.Read.
+func highBits(dst []byte, src []byte, invert bool) (d int, s int) {
+ // Pack as many complete groups of 8 src bytes as we can.
+ n := len(src) / 8
+ if n > len(dst) {
+ n = len(dst)
+ }
+ dstN := dst[:n]
+ for i := range dstN {
+ src8 := src[i*8 : i*8+8]
+ dstN[i] = ((src8[0] & 0x80) >> 0) |
+ ((src8[1] & 0x80) >> 1) |
+ ((src8[2] & 0x80) >> 2) |
+ ((src8[3] & 0x80) >> 3) |
+ ((src8[4] & 0x80) >> 4) |
+ ((src8[5] & 0x80) >> 5) |
+ ((src8[6] & 0x80) >> 6) |
+ ((src8[7] & 0x80) >> 7)
+ }
+ d, s = n, 8*n
+ dst, src = dst[d:], src[s:]
+
+ // Pack up to 7 remaining src bytes, if there's room in dst.
+ if (len(dst) > 0) && (len(src) > 0) {
+ dstByte := byte(0)
+ if invert {
+ dstByte = 0xFF >> uint(len(src))
+ }
+ for n, srcByte := range src {
+ dstByte |= (srcByte & 0x80) >> uint(n)
+ }
+ dst[0] = dstByte
+ d, s = d+1, s+len(src)
+ }
+ return d, s
+}
+
+type bitReader struct {
+ r io.Reader
+
+ // readErr is the error returned from the most recent r.Read call. As the
+ // io.Reader documentation says, when r.Read returns (n, err), "always
+ // process the n > 0 bytes returned before considering the error err".
+ readErr error
+
+ // order is whether to process r's bytes LSB first or MSB first.
+ order Order
+
+ // The high nBits bits of the bits field hold upcoming bits in MSB order.
+ bits uint64
+ nBits uint32
+
+ // bytes[br:bw] holds bytes read from r but not yet loaded into bits.
+ br uint32
+ bw uint32
+ bytes [1024]uint8
+}
+
+func (b *bitReader) alignToByteBoundary() {
+ n := b.nBits & 7
+ b.bits <<= n
+ b.nBits -= n
+}
+
+// nextBitMaxNBits is the maximum possible value of bitReader.nBits after a
+// bitReader.nextBit call, provided that bitReader.nBits was not more than this
+// value before that call.
+//
+// Note that the decode function can unread bits, which can temporarily set the
+// bitReader.nBits value above nextBitMaxNBits.
+const nextBitMaxNBits = 31
+
+func (b *bitReader) nextBit() (uint64, error) {
+ for {
+ if b.nBits > 0 {
+ bit := b.bits >> 63
+ b.bits <<= 1
+ b.nBits--
+ return bit, nil
+ }
+
+ if available := b.bw - b.br; available >= 4 {
+ // Read 32 bits, even though b.bits is a uint64, since the decode
+ // function may need to unread up to maxCodeLength bits, putting
+ // them back in the remaining (64 - 32) bits. TestMaxCodeLength
+ // checks that the generated maxCodeLength constant fits.
+ //
+ // If changing the Uint32 call, also change nextBitMaxNBits.
+ b.bits = uint64(binary.BigEndian.Uint32(b.bytes[b.br:])) << 32
+ b.br += 4
+ b.nBits = 32
+ continue
+ } else if available > 0 {
+ b.bits = uint64(b.bytes[b.br]) << (7 * 8)
+ b.br++
+ b.nBits = 8
+ continue
+ }
+
+ if b.readErr != nil {
+ return 0, b.readErr
+ }
+
+ n, err := b.r.Read(b.bytes[:])
+ b.br = 0
+ b.bw = uint32(n)
+ b.readErr = err
+
+ if b.order != MSB {
+ reverseBitsWithinBytes(b.bytes[:b.bw])
+ }
+ }
+}
+
+func decode(b *bitReader, decodeTable [][2]int16) (uint32, error) {
+ nBitsRead, bitsRead, state := uint32(0), uint64(0), int32(1)
+ for {
+ bit, err := b.nextBit()
+ if err != nil {
+ if err == io.EOF {
+ err = errIncompleteCode
+ }
+ return 0, err
+ }
+ bitsRead |= bit << (63 - nBitsRead)
+ nBitsRead++
+
+ // The "&1" is redundant, but can eliminate a bounds check.
+ state = int32(decodeTable[state][bit&1])
+ if state < 0 {
+ return uint32(^state), nil
+ } else if state == 0 {
+ // Unread the bits we've read, then return errInvalidCode.
+ b.bits = (b.bits >> nBitsRead) | bitsRead
+ b.nBits += nBitsRead
+ return 0, errInvalidCode
+ }
+ }
+}
+
+// decodeEOL decodes the 12-bit EOL code 0000_0000_0001.
+func decodeEOL(b *bitReader) error {
+ nBitsRead, bitsRead := uint32(0), uint64(0)
+ for {
+ bit, err := b.nextBit()
+ if err != nil {
+ if err == io.EOF {
+ err = errMissingEOL
+ }
+ return err
+ }
+ bitsRead |= bit << (63 - nBitsRead)
+ nBitsRead++
+
+ if nBitsRead < 12 {
+ if bit&1 == 0 {
+ continue
+ }
+ } else if bit&1 != 0 {
+ return nil
+ }
+
+ // Unread the bits we've read, then return errMissingEOL.
+ b.bits = (b.bits >> nBitsRead) | bitsRead
+ b.nBits += nBitsRead
+ return errMissingEOL
+ }
+}
+
+type reader struct {
+ br bitReader
+ subFormat SubFormat
+
+ // width is the image width in pixels.
+ width int
+
+ // rowsRemaining starts at the image height in pixels, when the reader is
+ // driven through the io.Reader interface, and decrements to zero as rows
+ // are decoded. Alternatively, it may be negative if the image height is
+ // not known in advance at the time of the NewReader call.
+ //
+ // When driven through DecodeIntoGray, this field is unused.
+ rowsRemaining int
+
+ // curr and prev hold the current and previous rows. Each element is either
+ // 0x00 (black) or 0xFF (white).
+ //
+ // prev may be nil, when processing the first row.
+ curr []byte
+ prev []byte
+
+ // ri is the read index. curr[:ri] are those bytes of curr that have been
+ // passed along via the Read method.
+ //
+ // When the reader is driven through DecodeIntoGray, instead of through the
+ // io.Reader interface, this field is unused.
+ ri int
+
+ // wi is the write index. curr[:wi] are those bytes of curr that have
+ // already been decoded via the decodeRow method.
+ //
+ // What this implementation calls wi is roughly equivalent to what the spec
+ // calls the a0 index.
+ wi int
+
+ // These fields are copied from the *Options (which may be nil).
+ align bool
+ invert bool
+
+ // atStartOfRow is whether we have just started the row. Some parts of the
+ // spec say to treat this situation as if "wi = -1".
+ atStartOfRow bool
+
+ // penColorIsWhite is whether the next run is black or white.
+ penColorIsWhite bool
+
+ // seenStartOfImage is whether we've called the startDecode method.
+ seenStartOfImage bool
+
+ // truncated is whether the input is missing the final 6 consecutive EOL's
+ // (for Group3) or 2 consecutive EOL's (for Group4). Omitting that trailer
+ // (but otherwise padding to a byte boundary, with either all 0 bits or all
+ // 1 bits) is invalid according to the spec, but happens in practice when
+ // exporting from Adobe Acrobat to TIFF + CCITT. This package silently
+ // ignores the format error for CCITT input that has been truncated in that
+ // fashion, returning the full decoded image.
+ //
+ // Detecting trailer truncation (just after the final row of pixels)
+ // requires knowing which row is the final row, and therefore does not
+ // trigger if the image height is not known in advance.
+ truncated bool
+
+ // readErr is a sticky error for the Read method.
+ readErr error
+}
+
+func (z *reader) Read(p []byte) (int, error) {
+ if z.readErr != nil {
+ return 0, z.readErr
+ }
+ originalP := p
+
+ for len(p) > 0 {
+ // Allocate buffers (and decode any start-of-image codes), if
+ // processing the first or second row.
+ if z.curr == nil {
+ if !z.seenStartOfImage {
+ if z.readErr = z.startDecode(); z.readErr != nil {
+ break
+ }
+ z.atStartOfRow = true
+ }
+ z.curr = make([]byte, z.width)
+ }
+
+ // Decode the next row, if necessary.
+ if z.atStartOfRow {
+ if z.rowsRemaining < 0 {
+ // We do not know the image height in advance. See if the next
+ // code is an EOL. If it is, it is consumed. If it isn't, the
+ // bitReader shouldn't advance along the bit stream, and we
+ // simply decode another row of pixel data.
+ //
+ // For the Group4 subFormat, we may need to align to a byte
+ // boundary. For the Group3 subFormat, the previous z.decodeRow
+ // call (or z.startDecode call) has already consumed one of the
+ // 6 consecutive EOL's. The next EOL is actually the second of
+ // 6, in the middle, and we shouldn't align at that point.
+ if z.align && (z.subFormat == Group4) {
+ z.br.alignToByteBoundary()
+ }
+
+ if err := z.decodeEOL(); err == errMissingEOL {
+ // No-op. It's another row of pixel data.
+ } else if err != nil {
+ z.readErr = err
+ break
+ } else {
+ if z.readErr = z.finishDecode(true); z.readErr != nil {
+ break
+ }
+ z.readErr = io.EOF
+ break
+ }
+
+ } else if z.rowsRemaining == 0 {
+ // We do know the image height in advance, and we have already
+ // decoded exactly that many rows.
+ if z.readErr = z.finishDecode(false); z.readErr != nil {
+ break
+ }
+ z.readErr = io.EOF
+ break
+
+ } else {
+ z.rowsRemaining--
+ }
+
+ if z.readErr = z.decodeRow(z.rowsRemaining == 0); z.readErr != nil {
+ break
+ }
+ }
+
+ // Pack from z.curr (1 byte per pixel) to p (1 bit per pixel).
+ packD, packS := highBits(p, z.curr[z.ri:], z.invert)
+ p = p[packD:]
+ z.ri += packS
+
+ // Prepare to decode the next row, if necessary.
+ if z.ri == len(z.curr) {
+ z.ri, z.curr, z.prev = 0, z.prev, z.curr
+ z.atStartOfRow = true
+ }
+ }
+
+ n := len(originalP) - len(p)
+ if z.invert {
+ invertBytes(originalP[:n])
+ }
+ return n, z.readErr
+}
+
+func (z *reader) penColor() byte {
+ if z.penColorIsWhite {
+ return 0xFF
+ }
+ return 0x00
+}
+
+func (z *reader) startDecode() error {
+ switch z.subFormat {
+ case Group3:
+ if err := z.decodeEOL(); err != nil {
+ return err
+ }
+
+ case Group4:
+ // No-op.
+
+ default:
+ return errUnsupportedSubFormat
+ }
+
+ z.seenStartOfImage = true
+ return nil
+}
+
+func (z *reader) finishDecode(alreadySeenEOL bool) error {
+ numberOfEOLs := 0
+ switch z.subFormat {
+ case Group3:
+ if z.truncated {
+ return nil
+ }
+ // The stream ends with a RTC (Return To Control) of 6 consecutive
+ // EOL's, but we should have already just seen an EOL, either in
+ // z.startDecode (for a zero-height image) or in z.decodeRow.
+ numberOfEOLs = 5
+
+ case Group4:
+ autoDetectHeight := z.rowsRemaining < 0
+ if autoDetectHeight {
+ // Aligning to a byte boundary was already handled by reader.Read.
+ } else if z.align {
+ z.br.alignToByteBoundary()
+ }
+ // The stream ends with two EOL's. If the first one is missing, and we
+ // had an explicit image height, we just assume that the trailing two
+ // EOL's were truncated and return a nil error.
+ if err := z.decodeEOL(); err != nil {
+ if (err == errMissingEOL) && !autoDetectHeight {
+ z.truncated = true
+ return nil
+ }
+ return err
+ }
+ numberOfEOLs = 1
+
+ default:
+ return errUnsupportedSubFormat
+ }
+
+ if alreadySeenEOL {
+ numberOfEOLs--
+ }
+ for ; numberOfEOLs > 0; numberOfEOLs-- {
+ if err := z.decodeEOL(); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func (z *reader) decodeEOL() error {
+ return decodeEOL(&z.br)
+}
+
+func (z *reader) decodeRow(finalRow bool) error {
+ z.wi = 0
+ z.atStartOfRow = true
+ z.penColorIsWhite = true
+
+ if z.align {
+ z.br.alignToByteBoundary()
+ }
+
+ switch z.subFormat {
+ case Group3:
+ for ; z.wi < len(z.curr); z.atStartOfRow = false {
+ if err := z.decodeRun(); err != nil {
+ return err
+ }
+ }
+ err := z.decodeEOL()
+ if finalRow && (err == errMissingEOL) {
+ z.truncated = true
+ return nil
+ }
+ return err
+
+ case Group4:
+ for ; z.wi < len(z.curr); z.atStartOfRow = false {
+ mode, err := decode(&z.br, modeDecodeTable[:])
+ if err != nil {
+ return err
+ }
+ rm := readerMode{}
+ if mode < uint32(len(readerModes)) {
+ rm = readerModes[mode]
+ }
+ if rm.function == nil {
+ return errInvalidMode
+ }
+ if err := rm.function(z, rm.arg); err != nil {
+ return err
+ }
+ }
+ return nil
+ }
+
+ return errUnsupportedSubFormat
+}
+
+func (z *reader) decodeRun() error {
+ table := blackDecodeTable[:]
+ if z.penColorIsWhite {
+ table = whiteDecodeTable[:]
+ }
+
+ total := 0
+ for {
+ n, err := decode(&z.br, table)
+ if err != nil {
+ return err
+ }
+ if n > maxWidth {
+ panic("unreachable")
+ }
+ total += int(n)
+ if total > maxWidth {
+ return errRunLengthTooLong
+ }
+ // Anything 0x3F or below is a terminal code.
+ if n <= 0x3F {
+ break
+ }
+ }
+
+ if total > (len(z.curr) - z.wi) {
+ return errRunLengthOverflowsWidth
+ }
+ dst := z.curr[z.wi : z.wi+total]
+ penColor := z.penColor()
+ for i := range dst {
+ dst[i] = penColor
+ }
+ z.wi += total
+ z.penColorIsWhite = !z.penColorIsWhite
+
+ return nil
+}
+
+// The various modes' semantics are based on determining a row of pixels'
+// "changing elements": those pixels whose color differs from the one on its
+// immediate left.
+//
+// The row above the first row is implicitly all white. Similarly, the column
+// to the left of the first column is implicitly all white.
+//
+// For example, here's Figure 1 in "ITU-T Recommendation T.6", where the
+// current and previous rows contain black (B) and white (w) pixels. The a?
+// indexes point into curr, the b? indexes point into prev.
+//
+// b1 b2
+// v v
+// prev: BBBBBwwwwwBBBwwwww
+// curr: BBBwwwwwBBBBBBwwww
+// ^ ^ ^
+// a0 a1 a2
+//
+// a0 is the "reference element" or current decoder position, roughly
+// equivalent to what this implementation calls reader.wi.
+//
+// a1 is the next changing element to the right of a0, on the "coding line"
+// (the current row).
+//
+// a2 is the next changing element to the right of a1, again on curr.
+//
+// b1 is the first changing element on the "reference line" (the previous row)
+// to the right of a0 and of opposite color to a0.
+//
+// b2 is the next changing element to the right of b1, again on prev.
+//
+// The various modes calculate a1 (and a2, for modeH):
+// - modePass calculates that a1 is at or to the right of b2.
+// - modeH calculates a1 and a2 without considering b1 or b2.
+// - modeV* calculates a1 to be b1 plus an adjustment (between -3 and +3).
+
+const (
+ findB1 = false
+ findB2 = true
+)
+
+// findB finds either the b1 or b2 value.
+func (z *reader) findB(whichB bool) int {
+ // The initial row is a special case. The previous row is implicitly all
+ // white, so that there are no changing pixel elements. We return b1 or b2
+ // to be at the end of the row.
+ if len(z.prev) != len(z.curr) {
+ return len(z.curr)
+ }
+
+ i := z.wi
+
+ if z.atStartOfRow {
+ // a0 is implicitly at -1, on a white pixel. b1 is the first black
+ // pixel in the previous row. b2 is the first white pixel after that.
+ for ; (i < len(z.prev)) && (z.prev[i] == 0xFF); i++ {
+ }
+ if whichB == findB2 {
+ for ; (i < len(z.prev)) && (z.prev[i] == 0x00); i++ {
+ }
+ }
+ return i
+ }
+
+ // As per figure 1 above, assume that the current pen color is white.
+ // First, walk past every contiguous black pixel in prev, starting at a0.
+ oppositeColor := ^z.penColor()
+ for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
+ }
+
+ // Then walk past every contiguous white pixel.
+ penColor := ^oppositeColor
+ for ; (i < len(z.prev)) && (z.prev[i] == penColor); i++ {
+ }
+
+ // We're now at a black pixel (or at the end of the row). That's b1.
+ if whichB == findB2 {
+ // If we're looking for b2, walk past every contiguous black pixel
+ // again.
+ oppositeColor := ^penColor
+ for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
+ }
+ }
+
+ return i
+}
+
+type readerMode struct {
+ function func(z *reader, arg int) error
+ arg int
+}
+
+var readerModes = [...]readerMode{
+ modePass: {function: readerModePass},
+ modeH: {function: readerModeH},
+ modeV0: {function: readerModeV, arg: +0},
+ modeVR1: {function: readerModeV, arg: +1},
+ modeVR2: {function: readerModeV, arg: +2},
+ modeVR3: {function: readerModeV, arg: +3},
+ modeVL1: {function: readerModeV, arg: -1},
+ modeVL2: {function: readerModeV, arg: -2},
+ modeVL3: {function: readerModeV, arg: -3},
+ modeExt: {function: readerModeExt},
+}
+
+func readerModePass(z *reader, arg int) error {
+ b2 := z.findB(findB2)
+ if (b2 < z.wi) || (len(z.curr) < b2) {
+ return errInvalidOffset
+ }
+ dst := z.curr[z.wi:b2]
+ penColor := z.penColor()
+ for i := range dst {
+ dst[i] = penColor
+ }
+ z.wi = b2
+ return nil
+}
+
+func readerModeH(z *reader, arg int) error {
+ // The first iteration finds a1. The second finds a2.
+ for i := 0; i < 2; i++ {
+ if err := z.decodeRun(); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func readerModeV(z *reader, arg int) error {
+ a1 := z.findB(findB1) + arg
+ if (a1 < z.wi) || (len(z.curr) < a1) {
+ return errInvalidOffset
+ }
+ dst := z.curr[z.wi:a1]
+ penColor := z.penColor()
+ for i := range dst {
+ dst[i] = penColor
+ }
+ z.wi = a1
+ z.penColorIsWhite = !z.penColorIsWhite
+ return nil
+}
+
+func readerModeExt(z *reader, arg int) error {
+ return errUnsupportedMode
+}
+
+// DecodeIntoGray decodes the CCITT-formatted data in r into dst.
+//
+// It returns an error if dst's width and height don't match the implied width
+// and height of CCITT-formatted data.
+func DecodeIntoGray(dst *image.Gray, r io.Reader, order Order, sf SubFormat, opts *Options) error {
+ bounds := dst.Bounds()
+ if (bounds.Dx() < 0) || (bounds.Dy() < 0) {
+ return errInvalidBounds
+ }
+ if bounds.Dx() > maxWidth {
+ return errUnsupportedWidth
+ }
+
+ z := reader{
+ br: bitReader{r: r, order: order},
+ subFormat: sf,
+ align: (opts != nil) && opts.Align,
+ invert: (opts != nil) && opts.Invert,
+ width: bounds.Dx(),
+ }
+ if err := z.startDecode(); err != nil {
+ return err
+ }
+
+ width := bounds.Dx()
+ for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
+ p := (y - bounds.Min.Y) * dst.Stride
+ z.curr = dst.Pix[p : p+width]
+ if err := z.decodeRow(y+1 == bounds.Max.Y); err != nil {
+ return err
+ }
+ z.curr, z.prev = nil, z.curr
+ }
+
+ if err := z.finishDecode(false); err != nil {
+ return err
+ }
+
+ if z.invert {
+ for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
+ p := (y - bounds.Min.Y) * dst.Stride
+ invertBytes(dst.Pix[p : p+width])
+ }
+ }
+
+ return nil
+}
+
+// NewReader returns an io.Reader that decodes the CCITT-formatted data in r.
+// The resultant byte stream is one bit per pixel (MSB first), with 1 meaning
+// white and 0 meaning black. Each row in the result is byte-aligned.
+//
+// A negative height, such as passing AutoDetectHeight, means that the image
+// height is not known in advance. A negative width is invalid.
+func NewReader(r io.Reader, order Order, sf SubFormat, width int, height int, opts *Options) io.Reader {
+ readErr := error(nil)
+ if width < 0 {
+ readErr = errInvalidBounds
+ } else if width > maxWidth {
+ readErr = errUnsupportedWidth
+ }
+
+ return &reader{
+ br: bitReader{r: r, order: order},
+ subFormat: sf,
+ align: (opts != nil) && opts.Align,
+ invert: (opts != nil) && opts.Invert,
+ width: width,
+ rowsRemaining: height,
+ readErr: readErr,
+ }
+}