summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/argon2/argon2.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/argon2/argon2.go')
-rw-r--r--vendor/golang.org/x/crypto/argon2/argon2.go285
1 files changed, 285 insertions, 0 deletions
diff --git a/vendor/golang.org/x/crypto/argon2/argon2.go b/vendor/golang.org/x/crypto/argon2/argon2.go
new file mode 100644
index 00000000..b423feae
--- /dev/null
+++ b/vendor/golang.org/x/crypto/argon2/argon2.go
@@ -0,0 +1,285 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package argon2 implements the key derivation function Argon2.
+// Argon2 was selected as the winner of the Password Hashing Competition and can
+// be used to derive cryptographic keys from passwords.
+//
+// For a detailed specification of Argon2 see [1].
+//
+// If you aren't sure which function you need, use Argon2id (IDKey) and
+// the parameter recommendations for your scenario.
+//
+//
+// Argon2i
+//
+// Argon2i (implemented by Key) is the side-channel resistant version of Argon2.
+// It uses data-independent memory access, which is preferred for password
+// hashing and password-based key derivation. Argon2i requires more passes over
+// memory than Argon2id to protect from trade-off attacks. The recommended
+// parameters (taken from [2]) for non-interactive operations are time=3 and to
+// use the maximum available memory.
+//
+//
+// Argon2id
+//
+// Argon2id (implemented by IDKey) is a hybrid version of Argon2 combining
+// Argon2i and Argon2d. It uses data-independent memory access for the first
+// half of the first iteration over the memory and data-dependent memory access
+// for the rest. Argon2id is side-channel resistant and provides better brute-
+// force cost savings due to time-memory tradeoffs than Argon2i. The recommended
+// parameters for non-interactive operations (taken from [2]) are time=1 and to
+// use the maximum available memory.
+//
+// [1] https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
+// [2] https://tools.ietf.org/html/draft-irtf-cfrg-argon2-03#section-9.3
+package argon2
+
+import (
+ "encoding/binary"
+ "sync"
+
+ "golang.org/x/crypto/blake2b"
+)
+
+// The Argon2 version implemented by this package.
+const Version = 0x13
+
+const (
+ argon2d = iota
+ argon2i
+ argon2id
+)
+
+// Key derives a key from the password, salt, and cost parameters using Argon2i
+// returning a byte slice of length keyLen that can be used as cryptographic
+// key. The CPU cost and parallelism degree must be greater than zero.
+//
+// For example, you can get a derived key for e.g. AES-256 (which needs a
+// 32-byte key) by doing:
+//
+// key := argon2.Key([]byte("some password"), salt, 3, 32*1024, 4, 32)
+//
+// The draft RFC recommends[2] time=3, and memory=32*1024 is a sensible number.
+// If using that amount of memory (32 MB) is not possible in some contexts then
+// the time parameter can be increased to compensate.
+//
+// The time parameter specifies the number of passes over the memory and the
+// memory parameter specifies the size of the memory in KiB. For example
+// memory=32*1024 sets the memory cost to ~32 MB. The number of threads can be
+// adjusted to the number of available CPUs. The cost parameters should be
+// increased as memory latency and CPU parallelism increases. Remember to get a
+// good random salt.
+func Key(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
+ return deriveKey(argon2i, password, salt, nil, nil, time, memory, threads, keyLen)
+}
+
+// IDKey derives a key from the password, salt, and cost parameters using
+// Argon2id returning a byte slice of length keyLen that can be used as
+// cryptographic key. The CPU cost and parallelism degree must be greater than
+// zero.
+//
+// For example, you can get a derived key for e.g. AES-256 (which needs a
+// 32-byte key) by doing:
+//
+// key := argon2.IDKey([]byte("some password"), salt, 1, 64*1024, 4, 32)
+//
+// The draft RFC recommends[2] time=1, and memory=64*1024 is a sensible number.
+// If using that amount of memory (64 MB) is not possible in some contexts then
+// the time parameter can be increased to compensate.
+//
+// The time parameter specifies the number of passes over the memory and the
+// memory parameter specifies the size of the memory in KiB. For example
+// memory=64*1024 sets the memory cost to ~64 MB. The number of threads can be
+// adjusted to the numbers of available CPUs. The cost parameters should be
+// increased as memory latency and CPU parallelism increases. Remember to get a
+// good random salt.
+func IDKey(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
+ return deriveKey(argon2id, password, salt, nil, nil, time, memory, threads, keyLen)
+}
+
+func deriveKey(mode int, password, salt, secret, data []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
+ if time < 1 {
+ panic("argon2: number of rounds too small")
+ }
+ if threads < 1 {
+ panic("argon2: parallelism degree too low")
+ }
+ h0 := initHash(password, salt, secret, data, time, memory, uint32(threads), keyLen, mode)
+
+ memory = memory / (syncPoints * uint32(threads)) * (syncPoints * uint32(threads))
+ if memory < 2*syncPoints*uint32(threads) {
+ memory = 2 * syncPoints * uint32(threads)
+ }
+ B := initBlocks(&h0, memory, uint32(threads))
+ processBlocks(B, time, memory, uint32(threads), mode)
+ return extractKey(B, memory, uint32(threads), keyLen)
+}
+
+const (
+ blockLength = 128
+ syncPoints = 4
+)
+
+type block [blockLength]uint64
+
+func initHash(password, salt, key, data []byte, time, memory, threads, keyLen uint32, mode int) [blake2b.Size + 8]byte {
+ var (
+ h0 [blake2b.Size + 8]byte
+ params [24]byte
+ tmp [4]byte
+ )
+
+ b2, _ := blake2b.New512(nil)
+ binary.LittleEndian.PutUint32(params[0:4], threads)
+ binary.LittleEndian.PutUint32(params[4:8], keyLen)
+ binary.LittleEndian.PutUint32(params[8:12], memory)
+ binary.LittleEndian.PutUint32(params[12:16], time)
+ binary.LittleEndian.PutUint32(params[16:20], uint32(Version))
+ binary.LittleEndian.PutUint32(params[20:24], uint32(mode))
+ b2.Write(params[:])
+ binary.LittleEndian.PutUint32(tmp[:], uint32(len(password)))
+ b2.Write(tmp[:])
+ b2.Write(password)
+ binary.LittleEndian.PutUint32(tmp[:], uint32(len(salt)))
+ b2.Write(tmp[:])
+ b2.Write(salt)
+ binary.LittleEndian.PutUint32(tmp[:], uint32(len(key)))
+ b2.Write(tmp[:])
+ b2.Write(key)
+ binary.LittleEndian.PutUint32(tmp[:], uint32(len(data)))
+ b2.Write(tmp[:])
+ b2.Write(data)
+ b2.Sum(h0[:0])
+ return h0
+}
+
+func initBlocks(h0 *[blake2b.Size + 8]byte, memory, threads uint32) []block {
+ var block0 [1024]byte
+ B := make([]block, memory)
+ for lane := uint32(0); lane < threads; lane++ {
+ j := lane * (memory / threads)
+ binary.LittleEndian.PutUint32(h0[blake2b.Size+4:], lane)
+
+ binary.LittleEndian.PutUint32(h0[blake2b.Size:], 0)
+ blake2bHash(block0[:], h0[:])
+ for i := range B[j+0] {
+ B[j+0][i] = binary.LittleEndian.Uint64(block0[i*8:])
+ }
+
+ binary.LittleEndian.PutUint32(h0[blake2b.Size:], 1)
+ blake2bHash(block0[:], h0[:])
+ for i := range B[j+1] {
+ B[j+1][i] = binary.LittleEndian.Uint64(block0[i*8:])
+ }
+ }
+ return B
+}
+
+func processBlocks(B []block, time, memory, threads uint32, mode int) {
+ lanes := memory / threads
+ segments := lanes / syncPoints
+
+ processSegment := func(n, slice, lane uint32, wg *sync.WaitGroup) {
+ var addresses, in, zero block
+ if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
+ in[0] = uint64(n)
+ in[1] = uint64(lane)
+ in[2] = uint64(slice)
+ in[3] = uint64(memory)
+ in[4] = uint64(time)
+ in[5] = uint64(mode)
+ }
+
+ index := uint32(0)
+ if n == 0 && slice == 0 {
+ index = 2 // we have already generated the first two blocks
+ if mode == argon2i || mode == argon2id {
+ in[6]++
+ processBlock(&addresses, &in, &zero)
+ processBlock(&addresses, &addresses, &zero)
+ }
+ }
+
+ offset := lane*lanes + slice*segments + index
+ var random uint64
+ for index < segments {
+ prev := offset - 1
+ if index == 0 && slice == 0 {
+ prev += lanes // last block in lane
+ }
+ if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
+ if index%blockLength == 0 {
+ in[6]++
+ processBlock(&addresses, &in, &zero)
+ processBlock(&addresses, &addresses, &zero)
+ }
+ random = addresses[index%blockLength]
+ } else {
+ random = B[prev][0]
+ }
+ newOffset := indexAlpha(random, lanes, segments, threads, n, slice, lane, index)
+ processBlockXOR(&B[offset], &B[prev], &B[newOffset])
+ index, offset = index+1, offset+1
+ }
+ wg.Done()
+ }
+
+ for n := uint32(0); n < time; n++ {
+ for slice := uint32(0); slice < syncPoints; slice++ {
+ var wg sync.WaitGroup
+ for lane := uint32(0); lane < threads; lane++ {
+ wg.Add(1)
+ go processSegment(n, slice, lane, &wg)
+ }
+ wg.Wait()
+ }
+ }
+
+}
+
+func extractKey(B []block, memory, threads, keyLen uint32) []byte {
+ lanes := memory / threads
+ for lane := uint32(0); lane < threads-1; lane++ {
+ for i, v := range B[(lane*lanes)+lanes-1] {
+ B[memory-1][i] ^= v
+ }
+ }
+
+ var block [1024]byte
+ for i, v := range B[memory-1] {
+ binary.LittleEndian.PutUint64(block[i*8:], v)
+ }
+ key := make([]byte, keyLen)
+ blake2bHash(key, block[:])
+ return key
+}
+
+func indexAlpha(rand uint64, lanes, segments, threads, n, slice, lane, index uint32) uint32 {
+ refLane := uint32(rand>>32) % threads
+ if n == 0 && slice == 0 {
+ refLane = lane
+ }
+ m, s := 3*segments, ((slice+1)%syncPoints)*segments
+ if lane == refLane {
+ m += index
+ }
+ if n == 0 {
+ m, s = slice*segments, 0
+ if slice == 0 || lane == refLane {
+ m += index
+ }
+ }
+ if index == 0 || lane == refLane {
+ m--
+ }
+ return phi(rand, uint64(m), uint64(s), refLane, lanes)
+}
+
+func phi(rand, m, s uint64, lane, lanes uint32) uint32 {
+ p := rand & 0xFFFFFFFF
+ p = (p * p) >> 32
+ p = (p * m) >> 32
+ return lane*lanes + uint32((s+m-(p+1))%uint64(lanes))
+}