summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/remyoudompheng/bigfft/fft.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/remyoudompheng/bigfft/fft.go')
-rw-r--r--vendor/github.com/remyoudompheng/bigfft/fft.go370
1 files changed, 370 insertions, 0 deletions
diff --git a/vendor/github.com/remyoudompheng/bigfft/fft.go b/vendor/github.com/remyoudompheng/bigfft/fft.go
new file mode 100644
index 00000000..2d4c1e7a
--- /dev/null
+++ b/vendor/github.com/remyoudompheng/bigfft/fft.go
@@ -0,0 +1,370 @@
+// Package bigfft implements multiplication of big.Int using FFT.
+//
+// The implementation is based on the Schönhage-Strassen method
+// using integer FFT modulo 2^n+1.
+package bigfft
+
+import (
+ "math/big"
+ "unsafe"
+)
+
+const _W = int(unsafe.Sizeof(big.Word(0)) * 8)
+
+type nat []big.Word
+
+func (n nat) String() string {
+ v := new(big.Int)
+ v.SetBits(n)
+ return v.String()
+}
+
+// fftThreshold is the size (in words) above which FFT is used over
+// Karatsuba from math/big.
+//
+// TestCalibrate seems to indicate a threshold of 60kbits on 32-bit
+// arches and 110kbits on 64-bit arches.
+var fftThreshold = 1800
+
+// Mul computes the product x*y and returns z.
+// It can be used instead of the Mul method of
+// *big.Int from math/big package.
+func Mul(x, y *big.Int) *big.Int {
+ xwords := len(x.Bits())
+ ywords := len(y.Bits())
+ if xwords > fftThreshold && ywords > fftThreshold {
+ return mulFFT(x, y)
+ }
+ return new(big.Int).Mul(x, y)
+}
+
+func mulFFT(x, y *big.Int) *big.Int {
+ var xb, yb nat = x.Bits(), y.Bits()
+ zb := fftmul(xb, yb)
+ z := new(big.Int)
+ z.SetBits(zb)
+ if x.Sign()*y.Sign() < 0 {
+ z.Neg(z)
+ }
+ return z
+}
+
+// A FFT size of K=1<<k is adequate when K is about 2*sqrt(N) where
+// N = x.Bitlen() + y.Bitlen().
+
+func fftmul(x, y nat) nat {
+ k, m := fftSize(x, y)
+ xp := polyFromNat(x, k, m)
+ yp := polyFromNat(y, k, m)
+ rp := xp.Mul(&yp)
+ return rp.Int()
+}
+
+// fftSizeThreshold[i] is the maximal size (in bits) where we should use
+// fft size i.
+var fftSizeThreshold = [...]int64{0, 0, 0,
+ 4 << 10, 8 << 10, 16 << 10, // 5
+ 32 << 10, 64 << 10, 1 << 18, 1 << 20, 3 << 20, // 10
+ 8 << 20, 30 << 20, 100 << 20, 300 << 20, 600 << 20,
+}
+
+// returns the FFT length k, m the number of words per chunk
+// such that m << k is larger than the number of words
+// in x*y.
+func fftSize(x, y nat) (k uint, m int) {
+ words := len(x) + len(y)
+ bits := int64(words) * int64(_W)
+ k = uint(len(fftSizeThreshold))
+ for i := range fftSizeThreshold {
+ if fftSizeThreshold[i] > bits {
+ k = uint(i)
+ break
+ }
+ }
+ // The 1<<k chunks of m words must have N bits so that
+ // 2^N-1 is larger than x*y. That is, m<<k > words
+ m = words>>k + 1
+ return
+}
+
+// valueSize returns the length (in words) to use for polynomial
+// coefficients, to compute a correct product of polynomials P*Q
+// where deg(P*Q) < K (== 1<<k) and where coefficients of P and Q are
+// less than b^m (== 1 << (m*_W)).
+// The chosen length (in bits) must be a multiple of 1 << (k-extra).
+func valueSize(k uint, m int, extra uint) int {
+ // The coefficients of P*Q are less than b^(2m)*K
+ // so we need W * valueSize >= 2*m*W+K
+ n := 2*m*_W + int(k) // necessary bits
+ K := 1 << (k - extra)
+ if K < _W {
+ K = _W
+ }
+ n = ((n / K) + 1) * K // round to a multiple of K
+ return n / _W
+}
+
+// poly represents an integer via a polynomial in Z[x]/(x^K+1)
+// where K is the FFT length and b^m is the computation basis 1<<(m*_W).
+// If P = a[0] + a[1] x + ... a[n] x^(K-1), the associated natural number
+// is P(b^m).
+type poly struct {
+ k uint // k is such that K = 1<<k.
+ m int // the m such that P(b^m) is the original number.
+ a []nat // a slice of at most K m-word coefficients.
+}
+
+// polyFromNat slices the number x into a polynomial
+// with 1<<k coefficients made of m words.
+func polyFromNat(x nat, k uint, m int) poly {
+ p := poly{k: k, m: m}
+ length := len(x)/m + 1
+ p.a = make([]nat, length)
+ for i := range p.a {
+ if len(x) < m {
+ p.a[i] = make(nat, m)
+ copy(p.a[i], x)
+ break
+ }
+ p.a[i] = x[:m]
+ x = x[m:]
+ }
+ return p
+}
+
+// Int evaluates back a poly to its integer value.
+func (p *poly) Int() nat {
+ length := len(p.a)*p.m + 1
+ if na := len(p.a); na > 0 {
+ length += len(p.a[na-1])
+ }
+ n := make(nat, length)
+ m := p.m
+ np := n
+ for i := range p.a {
+ l := len(p.a[i])
+ c := addVV(np[:l], np[:l], p.a[i])
+ if np[l] < ^big.Word(0) {
+ np[l] += c
+ } else {
+ addVW(np[l:], np[l:], c)
+ }
+ np = np[m:]
+ }
+ n = trim(n)
+ return n
+}
+
+func trim(n nat) nat {
+ for i := range n {
+ if n[len(n)-1-i] != 0 {
+ return n[:len(n)-i]
+ }
+ }
+ return nil
+}
+
+// Mul multiplies p and q modulo X^K-1, where K = 1<<p.k.
+// The product is done via a Fourier transform.
+func (p *poly) Mul(q *poly) poly {
+ // extra=2 because:
+ // * some power of 2 is a K-th root of unity when n is a multiple of K/2.
+ // * 2 itself is a square (see fermat.ShiftHalf)
+ n := valueSize(p.k, p.m, 2)
+
+ pv, qv := p.Transform(n), q.Transform(n)
+ rv := pv.Mul(&qv)
+ r := rv.InvTransform()
+ r.m = p.m
+ return r
+}
+
+// A polValues represents the value of a poly at the powers of a
+// K-th root of unity θ=2^(l/2) in Z/(b^n+1)Z, where b^n = 2^(K/4*l).
+type polValues struct {
+ k uint // k is such that K = 1<<k.
+ n int // the length of coefficients, n*_W a multiple of K/4.
+ values []fermat // a slice of K (n+1)-word values
+}
+
+// Transform evaluates p at θ^i for i = 0...K-1, where
+// θ is a K-th primitive root of unity in Z/(b^n+1)Z.
+func (p *poly) Transform(n int) polValues {
+ k := p.k
+ inputbits := make([]big.Word, (n+1)<<k)
+ input := make([]fermat, 1<<k)
+ // Now computed q(ω^i) for i = 0 ... K-1
+ valbits := make([]big.Word, (n+1)<<k)
+ values := make([]fermat, 1<<k)
+ for i := range values {
+ input[i] = inputbits[i*(n+1) : (i+1)*(n+1)]
+ if i < len(p.a) {
+ copy(input[i], p.a[i])
+ }
+ values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
+ }
+ fourier(values, input, false, n, k)
+ return polValues{k, n, values}
+}
+
+// InvTransform reconstructs p (modulo X^K - 1) from its
+// values at θ^i for i = 0..K-1.
+func (v *polValues) InvTransform() poly {
+ k, n := v.k, v.n
+
+ // Perform an inverse Fourier transform to recover p.
+ pbits := make([]big.Word, (n+1)<<k)
+ p := make([]fermat, 1<<k)
+ for i := range p {
+ p[i] = fermat(pbits[i*(n+1) : (i+1)*(n+1)])
+ }
+ fourier(p, v.values, true, n, k)
+ // Divide by K, and untwist q to recover p.
+ u := make(fermat, n+1)
+ a := make([]nat, 1<<k)
+ for i := range p {
+ u.Shift(p[i], -int(k))
+ copy(p[i], u)
+ a[i] = nat(p[i])
+ }
+ return poly{k: k, m: 0, a: a}
+}
+
+// NTransform evaluates p at θω^i for i = 0...K-1, where
+// θ is a (2K)-th primitive root of unity in Z/(b^n+1)Z
+// and ω = θ².
+func (p *poly) NTransform(n int) polValues {
+ k := p.k
+ if len(p.a) >= 1<<k {
+ panic("Transform: len(p.a) >= 1<<k")
+ }
+ // θ is represented as a shift.
+ θshift := (n * _W) >> k
+ // p(x) = a_0 + a_1 x + ... + a_{K-1} x^(K-1)
+ // p(θx) = q(x) where
+ // q(x) = a_0 + θa_1 x + ... + θ^(K-1) a_{K-1} x^(K-1)
+ //
+ // Twist p by θ to obtain q.
+ tbits := make([]big.Word, (n+1)<<k)
+ twisted := make([]fermat, 1<<k)
+ src := make(fermat, n+1)
+ for i := range twisted {
+ twisted[i] = fermat(tbits[i*(n+1) : (i+1)*(n+1)])
+ if i < len(p.a) {
+ for i := range src {
+ src[i] = 0
+ }
+ copy(src, p.a[i])
+ twisted[i].Shift(src, θshift*i)
+ }
+ }
+
+ // Now computed q(ω^i) for i = 0 ... K-1
+ valbits := make([]big.Word, (n+1)<<k)
+ values := make([]fermat, 1<<k)
+ for i := range values {
+ values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
+ }
+ fourier(values, twisted, false, n, k)
+ return polValues{k, n, values}
+}
+
+// InvTransform reconstructs a polynomial from its values at
+// roots of x^K+1. The m field of the returned polynomial
+// is unspecified.
+func (v *polValues) InvNTransform() poly {
+ k := v.k
+ n := v.n
+ θshift := (n * _W) >> k
+
+ // Perform an inverse Fourier transform to recover q.
+ qbits := make([]big.Word, (n+1)<<k)
+ q := make([]fermat, 1<<k)
+ for i := range q {
+ q[i] = fermat(qbits[i*(n+1) : (i+1)*(n+1)])
+ }
+ fourier(q, v.values, true, n, k)
+
+ // Divide by K, and untwist q to recover p.
+ u := make(fermat, n+1)
+ a := make([]nat, 1<<k)
+ for i := range q {
+ u.Shift(q[i], -int(k)-i*θshift)
+ copy(q[i], u)
+ a[i] = nat(q[i])
+ }
+ return poly{k: k, m: 0, a: a}
+}
+
+// fourier performs an unnormalized Fourier transform
+// of src, a length 1<<k vector of numbers modulo b^n+1
+// where b = 1<<_W.
+func fourier(dst []fermat, src []fermat, backward bool, n int, k uint) {
+ var rec func(dst, src []fermat, size uint)
+ tmp := make(fermat, n+1) // pre-allocate temporary variables.
+ tmp2 := make(fermat, n+1) // pre-allocate temporary variables.
+
+ // The recursion function of the FFT.
+ // The root of unity used in the transform is ω=1<<(ω2shift/2).
+ // The source array may use shifted indices (i.e. the i-th
+ // element is src[i << idxShift]).
+ rec = func(dst, src []fermat, size uint) {
+ idxShift := k - size
+ ω2shift := (4 * n * _W) >> size
+ if backward {
+ ω2shift = -ω2shift
+ }
+
+ // Easy cases.
+ if len(src[0]) != n+1 || len(dst[0]) != n+1 {
+ panic("len(src[0]) != n+1 || len(dst[0]) != n+1")
+ }
+ switch size {
+ case 0:
+ copy(dst[0], src[0])
+ return
+ case 1:
+ dst[0].Add(src[0], src[1<<idxShift]) // dst[0] = src[0] + src[1]
+ dst[1].Sub(src[0], src[1<<idxShift]) // dst[1] = src[0] - src[1]
+ return
+ }
+
+ // Let P(x) = src[0] + src[1<<idxShift] * x + ... + src[K-1 << idxShift] * x^(K-1)
+ // The P(x) = Q1(x²) + x*Q2(x²)
+ // where Q1's coefficients are src with indices shifted by 1
+ // where Q2's coefficients are src[1<<idxShift:] with indices shifted by 1
+
+ // Split destination vectors in halves.
+ dst1 := dst[:1<<(size-1)]
+ dst2 := dst[1<<(size-1):]
+ // Transform Q1 and Q2 in the halves.
+ rec(dst1, src, size-1)
+ rec(dst2, src[1<<idxShift:], size-1)
+
+ // Reconstruct P's transform from transforms of Q1 and Q2.
+ // dst[i] is dst1[i] + ω^i * dst2[i]
+ // dst[i + 1<<(k-1)] is dst1[i] + ω^(i+K/2) * dst2[i]
+ //
+ for i := range dst1 {
+ tmp.ShiftHalf(dst2[i], i*ω2shift, tmp2) // ω^i * dst2[i]
+ dst2[i].Sub(dst1[i], tmp)
+ dst1[i].Add(dst1[i], tmp)
+ }
+ }
+ rec(dst, src, k)
+}
+
+// Mul returns the pointwise product of p and q.
+func (p *polValues) Mul(q *polValues) (r polValues) {
+ n := p.n
+ r.k, r.n = p.k, p.n
+ r.values = make([]fermat, len(p.values))
+ bits := make([]big.Word, len(p.values)*(n+1))
+ buf := make(fermat, 8*n)
+ for i := range r.values {
+ r.values[i] = bits[i*(n+1) : (i+1)*(n+1)]
+ z := buf.Mul(p.values[i], q.values[i])
+ copy(r.values[i], z)
+ }
+ return
+}