diff options
Diffstat (limited to 'vendor/github.com/klauspost/compress/compressible.go')
-rw-r--r-- | vendor/github.com/klauspost/compress/compressible.go | 85 |
1 files changed, 85 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/compressible.go b/vendor/github.com/klauspost/compress/compressible.go new file mode 100644 index 00000000..ea5a692d --- /dev/null +++ b/vendor/github.com/klauspost/compress/compressible.go @@ -0,0 +1,85 @@ +package compress + +import "math" + +// Estimate returns a normalized compressibility estimate of block b. +// Values close to zero are likely uncompressible. +// Values above 0.1 are likely to be compressible. +// Values above 0.5 are very compressible. +// Very small lengths will return 0. +func Estimate(b []byte) float64 { + if len(b) < 16 { + return 0 + } + + // Correctly predicted order 1 + hits := 0 + lastMatch := false + var o1 [256]byte + var hist [256]int + c1 := byte(0) + for _, c := range b { + if c == o1[c1] { + // We only count a hit if there was two correct predictions in a row. + if lastMatch { + hits++ + } + lastMatch = true + } else { + lastMatch = false + } + o1[c1] = c + c1 = c + hist[c]++ + } + + // Use x^0.6 to give better spread + prediction := math.Pow(float64(hits)/float64(len(b)), 0.6) + + // Calculate histogram distribution + variance := float64(0) + avg := float64(len(b)) / 256 + + for _, v := range hist { + Δ := float64(v) - avg + variance += Δ * Δ + } + + stddev := math.Sqrt(float64(variance)) / float64(len(b)) + exp := math.Sqrt(1 / float64(len(b))) + + // Subtract expected stddev + stddev -= exp + if stddev < 0 { + stddev = 0 + } + stddev *= 1 + exp + + // Use x^0.4 to give better spread + entropy := math.Pow(stddev, 0.4) + + // 50/50 weight between prediction and histogram distribution + return math.Pow((prediction+entropy)/2, 0.9) +} + +// ShannonEntropyBits returns the number of bits minimum required to represent +// an entropy encoding of the input bytes. +// https://en.wiktionary.org/wiki/Shannon_entropy +func ShannonEntropyBits(b []byte) int { + if len(b) == 0 { + return 0 + } + var hist [256]int + for _, c := range b { + hist[c]++ + } + shannon := float64(0) + invTotal := 1.0 / float64(len(b)) + for _, v := range hist[:] { + if v > 0 { + n := float64(v) + shannon += math.Ceil(-math.Log2(n*invTotal) * n) + } + } + return int(math.Ceil(shannon)) +} |