diff options
Diffstat (limited to 'vendor/github.com/disintegration/imaging/convolution.go')
-rw-r--r-- | vendor/github.com/disintegration/imaging/convolution.go | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/vendor/github.com/disintegration/imaging/convolution.go b/vendor/github.com/disintegration/imaging/convolution.go new file mode 100644 index 00000000..11eddc16 --- /dev/null +++ b/vendor/github.com/disintegration/imaging/convolution.go @@ -0,0 +1,148 @@ +package imaging + +import ( + "image" +) + +// ConvolveOptions are convolution parameters. +type ConvolveOptions struct { + // If Normalize is true the kernel is normalized before convolution. + Normalize bool + + // If Abs is true the absolute value of each color channel is taken after convolution. + Abs bool + + // Bias is added to each color channel value after convolution. + Bias int +} + +// Convolve3x3 convolves the image with the specified 3x3 convolution kernel. +// Default parameters are used if a nil *ConvolveOptions is passed. +func Convolve3x3(img image.Image, kernel [9]float64, options *ConvolveOptions) *image.NRGBA { + return convolve(img, kernel[:], options) +} + +// Convolve5x5 convolves the image with the specified 5x5 convolution kernel. +// Default parameters are used if a nil *ConvolveOptions is passed. +func Convolve5x5(img image.Image, kernel [25]float64, options *ConvolveOptions) *image.NRGBA { + return convolve(img, kernel[:], options) +} + +func convolve(img image.Image, kernel []float64, options *ConvolveOptions) *image.NRGBA { + src := toNRGBA(img) + w := src.Bounds().Max.X + h := src.Bounds().Max.Y + dst := image.NewNRGBA(image.Rect(0, 0, w, h)) + + if w < 1 || h < 1 { + return dst + } + + if options == nil { + options = &ConvolveOptions{} + } + + if options.Normalize { + normalizeKernel(kernel) + } + + type coef struct { + x, y int + k float64 + } + var coefs []coef + var m int + + switch len(kernel) { + case 9: + m = 1 + case 25: + m = 2 + } + + i := 0 + for y := -m; y <= m; y++ { + for x := -m; x <= m; x++ { + if kernel[i] != 0 { + coefs = append(coefs, coef{x: x, y: y, k: kernel[i]}) + } + i++ + } + } + + parallel(0, h, func(ys <-chan int) { + for y := range ys { + for x := 0; x < w; x++ { + var r, g, b float64 + for _, c := range coefs { + ix := x + c.x + if ix < 0 { + ix = 0 + } else if ix >= w { + ix = w - 1 + } + + iy := y + c.y + if iy < 0 { + iy = 0 + } else if iy >= h { + iy = h - 1 + } + + off := iy*src.Stride + ix*4 + s := src.Pix[off : off+3 : off+3] + r += float64(s[0]) * c.k + g += float64(s[1]) * c.k + b += float64(s[2]) * c.k + } + + if options.Abs { + if r < 0 { + r = -r + } + if g < 0 { + g = -g + } + if b < 0 { + b = -b + } + } + + if options.Bias != 0 { + r += float64(options.Bias) + g += float64(options.Bias) + b += float64(options.Bias) + } + + srcOff := y*src.Stride + x*4 + dstOff := y*dst.Stride + x*4 + d := dst.Pix[dstOff : dstOff+4 : dstOff+4] + d[0] = clamp(r) + d[1] = clamp(g) + d[2] = clamp(b) + d[3] = src.Pix[srcOff+3] + } + } + }) + + return dst +} + +func normalizeKernel(kernel []float64) { + var sum, sumpos float64 + for i := range kernel { + sum += kernel[i] + if kernel[i] > 0 { + sumpos += kernel[i] + } + } + if sum != 0 { + for i := range kernel { + kernel[i] /= sum + } + } else if sumpos != 0 { + for i := range kernel { + kernel[i] /= sumpos + } + } +} |