summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/disintegration/imaging/convolution.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/disintegration/imaging/convolution.go')
-rw-r--r--vendor/github.com/disintegration/imaging/convolution.go148
1 files changed, 148 insertions, 0 deletions
diff --git a/vendor/github.com/disintegration/imaging/convolution.go b/vendor/github.com/disintegration/imaging/convolution.go
new file mode 100644
index 00000000..11eddc16
--- /dev/null
+++ b/vendor/github.com/disintegration/imaging/convolution.go
@@ -0,0 +1,148 @@
+package imaging
+
+import (
+ "image"
+)
+
+// ConvolveOptions are convolution parameters.
+type ConvolveOptions struct {
+ // If Normalize is true the kernel is normalized before convolution.
+ Normalize bool
+
+ // If Abs is true the absolute value of each color channel is taken after convolution.
+ Abs bool
+
+ // Bias is added to each color channel value after convolution.
+ Bias int
+}
+
+// Convolve3x3 convolves the image with the specified 3x3 convolution kernel.
+// Default parameters are used if a nil *ConvolveOptions is passed.
+func Convolve3x3(img image.Image, kernel [9]float64, options *ConvolveOptions) *image.NRGBA {
+ return convolve(img, kernel[:], options)
+}
+
+// Convolve5x5 convolves the image with the specified 5x5 convolution kernel.
+// Default parameters are used if a nil *ConvolveOptions is passed.
+func Convolve5x5(img image.Image, kernel [25]float64, options *ConvolveOptions) *image.NRGBA {
+ return convolve(img, kernel[:], options)
+}
+
+func convolve(img image.Image, kernel []float64, options *ConvolveOptions) *image.NRGBA {
+ src := toNRGBA(img)
+ w := src.Bounds().Max.X
+ h := src.Bounds().Max.Y
+ dst := image.NewNRGBA(image.Rect(0, 0, w, h))
+
+ if w < 1 || h < 1 {
+ return dst
+ }
+
+ if options == nil {
+ options = &ConvolveOptions{}
+ }
+
+ if options.Normalize {
+ normalizeKernel(kernel)
+ }
+
+ type coef struct {
+ x, y int
+ k float64
+ }
+ var coefs []coef
+ var m int
+
+ switch len(kernel) {
+ case 9:
+ m = 1
+ case 25:
+ m = 2
+ }
+
+ i := 0
+ for y := -m; y <= m; y++ {
+ for x := -m; x <= m; x++ {
+ if kernel[i] != 0 {
+ coefs = append(coefs, coef{x: x, y: y, k: kernel[i]})
+ }
+ i++
+ }
+ }
+
+ parallel(0, h, func(ys <-chan int) {
+ for y := range ys {
+ for x := 0; x < w; x++ {
+ var r, g, b float64
+ for _, c := range coefs {
+ ix := x + c.x
+ if ix < 0 {
+ ix = 0
+ } else if ix >= w {
+ ix = w - 1
+ }
+
+ iy := y + c.y
+ if iy < 0 {
+ iy = 0
+ } else if iy >= h {
+ iy = h - 1
+ }
+
+ off := iy*src.Stride + ix*4
+ s := src.Pix[off : off+3 : off+3]
+ r += float64(s[0]) * c.k
+ g += float64(s[1]) * c.k
+ b += float64(s[2]) * c.k
+ }
+
+ if options.Abs {
+ if r < 0 {
+ r = -r
+ }
+ if g < 0 {
+ g = -g
+ }
+ if b < 0 {
+ b = -b
+ }
+ }
+
+ if options.Bias != 0 {
+ r += float64(options.Bias)
+ g += float64(options.Bias)
+ b += float64(options.Bias)
+ }
+
+ srcOff := y*src.Stride + x*4
+ dstOff := y*dst.Stride + x*4
+ d := dst.Pix[dstOff : dstOff+4 : dstOff+4]
+ d[0] = clamp(r)
+ d[1] = clamp(g)
+ d[2] = clamp(b)
+ d[3] = src.Pix[srcOff+3]
+ }
+ }
+ })
+
+ return dst
+}
+
+func normalizeKernel(kernel []float64) {
+ var sum, sumpos float64
+ for i := range kernel {
+ sum += kernel[i]
+ if kernel[i] > 0 {
+ sumpos += kernel[i]
+ }
+ }
+ if sum != 0 {
+ for i := range kernel {
+ kernel[i] /= sum
+ }
+ } else if sumpos != 0 {
+ for i := range kernel {
+ kernel[i] /= sumpos
+ }
+ }
+}