summaryrefslogtreecommitdiffstats
path: root/vendor/filippo.io
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/filippo.io')
-rw-r--r--vendor/filippo.io/edwards25519/LICENSE27
-rw-r--r--vendor/filippo.io/edwards25519/README.md14
-rw-r--r--vendor/filippo.io/edwards25519/doc.go20
-rw-r--r--vendor/filippo.io/edwards25519/edwards25519.go428
-rw-r--r--vendor/filippo.io/edwards25519/extra.go343
-rw-r--r--vendor/filippo.io/edwards25519/field/fe.go419
-rw-r--r--vendor/filippo.io/edwards25519/field/fe_amd64.go13
-rw-r--r--vendor/filippo.io/edwards25519/field/fe_amd64.s378
-rw-r--r--vendor/filippo.io/edwards25519/field/fe_amd64_noasm.go12
-rw-r--r--vendor/filippo.io/edwards25519/field/fe_arm64.go16
-rw-r--r--vendor/filippo.io/edwards25519/field/fe_arm64.s42
-rw-r--r--vendor/filippo.io/edwards25519/field/fe_arm64_noasm.go12
-rw-r--r--vendor/filippo.io/edwards25519/field/fe_generic.go264
-rw-r--r--vendor/filippo.io/edwards25519/scalar.go1027
-rw-r--r--vendor/filippo.io/edwards25519/scalarmult.go214
-rw-r--r--vendor/filippo.io/edwards25519/tables.go129
16 files changed, 3358 insertions, 0 deletions
diff --git a/vendor/filippo.io/edwards25519/LICENSE b/vendor/filippo.io/edwards25519/LICENSE
new file mode 100644
index 00000000..6a66aea5
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/LICENSE
@@ -0,0 +1,27 @@
+Copyright (c) 2009 The Go Authors. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+ * Neither the name of Google Inc. nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/vendor/filippo.io/edwards25519/README.md b/vendor/filippo.io/edwards25519/README.md
new file mode 100644
index 00000000..e87d1654
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/README.md
@@ -0,0 +1,14 @@
+# filippo.io/edwards25519
+
+```
+import "filippo.io/edwards25519"
+```
+
+This library implements the edwards25519 elliptic curve, exposing the necessary APIs to build a wide array of higher-level primitives.
+Read the docs at [pkg.go.dev/filippo.io/edwards25519](https://pkg.go.dev/filippo.io/edwards25519).
+
+The code is originally derived from Adam Langley's internal implementation in the Go standard library, and includes George Tankersley's [performance improvements](https://golang.org/cl/71950). It was then further developed by Henry de Valence for use in ristretto255.
+
+Most users don't need this package, and should instead use `crypto/ed25519` for signatures, `golang.org/x/crypto/curve25519` for Diffie-Hellman, or `github.com/gtank/ristretto255` for prime order group logic. However, for anyone currently using a fork of `crypto/ed25519/internal/edwards25519` or `github.com/agl/edwards25519`, this package should be a safer, faster, and more powerful alternative.
+
+Since this package is meant to curb proliferation of edwards25519 implementations in the Go ecosystem, it welcomes requests for new APIs or reviewable performance improvements.
diff --git a/vendor/filippo.io/edwards25519/doc.go b/vendor/filippo.io/edwards25519/doc.go
new file mode 100644
index 00000000..d8608b06
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/doc.go
@@ -0,0 +1,20 @@
+// Copyright (c) 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package edwards25519 implements group logic for the twisted Edwards curve
+//
+// -x^2 + y^2 = 1 + -(121665/121666)*x^2*y^2
+//
+// This is better known as the Edwards curve equivalent to Curve25519, and is
+// the curve used by the Ed25519 signature scheme.
+//
+// Most users don't need this package, and should instead use crypto/ed25519 for
+// signatures, golang.org/x/crypto/curve25519 for Diffie-Hellman, or
+// github.com/gtank/ristretto255 for prime order group logic.
+//
+// However, developers who do need to interact with low-level edwards25519
+// operations can use this package, which is an extended version of
+// crypto/ed25519/internal/edwards25519 from the standard library repackaged as
+// an importable module.
+package edwards25519
diff --git a/vendor/filippo.io/edwards25519/edwards25519.go b/vendor/filippo.io/edwards25519/edwards25519.go
new file mode 100644
index 00000000..e22a7c2d
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/edwards25519.go
@@ -0,0 +1,428 @@
+// Copyright (c) 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package edwards25519
+
+import (
+ "errors"
+
+ "filippo.io/edwards25519/field"
+)
+
+// Point types.
+
+type projP1xP1 struct {
+ X, Y, Z, T field.Element
+}
+
+type projP2 struct {
+ X, Y, Z field.Element
+}
+
+// Point represents a point on the edwards25519 curve.
+//
+// This type works similarly to math/big.Int, and all arguments and receivers
+// are allowed to alias.
+//
+// The zero value is NOT valid, and it may be used only as a receiver.
+type Point struct {
+ // The point is internally represented in extended coordinates (X, Y, Z, T)
+ // where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522.
+ x, y, z, t field.Element
+
+ // Make the type not comparable (i.e. used with == or as a map key), as
+ // equivalent points can be represented by different Go values.
+ _ incomparable
+}
+
+type incomparable [0]func()
+
+func checkInitialized(points ...*Point) {
+ for _, p := range points {
+ if p.x == (field.Element{}) && p.y == (field.Element{}) {
+ panic("edwards25519: use of uninitialized Point")
+ }
+ }
+}
+
+type projCached struct {
+ YplusX, YminusX, Z, T2d field.Element
+}
+
+type affineCached struct {
+ YplusX, YminusX, T2d field.Element
+}
+
+// Constructors.
+
+func (v *projP2) Zero() *projP2 {
+ v.X.Zero()
+ v.Y.One()
+ v.Z.One()
+ return v
+}
+
+// identity is the point at infinity.
+var identity, _ = new(Point).SetBytes([]byte{
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})
+
+// NewIdentityPoint returns a new Point set to the identity.
+func NewIdentityPoint() *Point {
+ return new(Point).Set(identity)
+}
+
+// generator is the canonical curve basepoint. See TestGenerator for the
+// correspondence of this encoding with the values in RFC 8032.
+var generator, _ = new(Point).SetBytes([]byte{
+ 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
+ 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
+ 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
+ 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66})
+
+// NewGeneratorPoint returns a new Point set to the canonical generator.
+func NewGeneratorPoint() *Point {
+ return new(Point).Set(generator)
+}
+
+func (v *projCached) Zero() *projCached {
+ v.YplusX.One()
+ v.YminusX.One()
+ v.Z.One()
+ v.T2d.Zero()
+ return v
+}
+
+func (v *affineCached) Zero() *affineCached {
+ v.YplusX.One()
+ v.YminusX.One()
+ v.T2d.Zero()
+ return v
+}
+
+// Assignments.
+
+// Set sets v = u, and returns v.
+func (v *Point) Set(u *Point) *Point {
+ *v = *u
+ return v
+}
+
+// Encoding.
+
+// Bytes returns the canonical 32-byte encoding of v, according to RFC 8032,
+// Section 5.1.2.
+func (v *Point) Bytes() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var buf [32]byte
+ return v.bytes(&buf)
+}
+
+func (v *Point) bytes(buf *[32]byte) []byte {
+ checkInitialized(v)
+
+ var zInv, x, y field.Element
+ zInv.Invert(&v.z) // zInv = 1 / Z
+ x.Multiply(&v.x, &zInv) // x = X / Z
+ y.Multiply(&v.y, &zInv) // y = Y / Z
+
+ out := copyFieldElement(buf, &y)
+ out[31] |= byte(x.IsNegative() << 7)
+ return out
+}
+
+var feOne = new(field.Element).One()
+
+// SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not
+// represent a valid point on the curve, SetBytes returns nil and an error and
+// the receiver is unchanged. Otherwise, SetBytes returns v.
+//
+// Note that SetBytes accepts all non-canonical encodings of valid points.
+// That is, it follows decoding rules that match most implementations in
+// the ecosystem rather than RFC 8032.
+func (v *Point) SetBytes(x []byte) (*Point, error) {
+ // Specifically, the non-canonical encodings that are accepted are
+ // 1) the ones where the field element is not reduced (see the
+ // (*field.Element).SetBytes docs) and
+ // 2) the ones where the x-coordinate is zero and the sign bit is set.
+ //
+ // This is consistent with crypto/ed25519/internal/edwards25519. Read more
+ // at https://hdevalence.ca/blog/2020-10-04-its-25519am, specifically the
+ // "Canonical A, R" section.
+
+ y, err := new(field.Element).SetBytes(x)
+ if err != nil {
+ return nil, errors.New("edwards25519: invalid point encoding length")
+ }
+
+ // -x² + y² = 1 + dx²y²
+ // x² + dx²y² = x²(dy² + 1) = y² - 1
+ // x² = (y² - 1) / (dy² + 1)
+
+ // u = y² - 1
+ y2 := new(field.Element).Square(y)
+ u := new(field.Element).Subtract(y2, feOne)
+
+ // v = dy² + 1
+ vv := new(field.Element).Multiply(y2, d)
+ vv = vv.Add(vv, feOne)
+
+ // x = +√(u/v)
+ xx, wasSquare := new(field.Element).SqrtRatio(u, vv)
+ if wasSquare == 0 {
+ return nil, errors.New("edwards25519: invalid point encoding")
+ }
+
+ // Select the negative square root if the sign bit is set.
+ xxNeg := new(field.Element).Negate(xx)
+ xx = xx.Select(xxNeg, xx, int(x[31]>>7))
+
+ v.x.Set(xx)
+ v.y.Set(y)
+ v.z.One()
+ v.t.Multiply(xx, y) // xy = T / Z
+
+ return v, nil
+}
+
+func copyFieldElement(buf *[32]byte, v *field.Element) []byte {
+ copy(buf[:], v.Bytes())
+ return buf[:]
+}
+
+// Conversions.
+
+func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 {
+ v.X.Multiply(&p.X, &p.T)
+ v.Y.Multiply(&p.Y, &p.Z)
+ v.Z.Multiply(&p.Z, &p.T)
+ return v
+}
+
+func (v *projP2) FromP3(p *Point) *projP2 {
+ v.X.Set(&p.x)
+ v.Y.Set(&p.y)
+ v.Z.Set(&p.z)
+ return v
+}
+
+func (v *Point) fromP1xP1(p *projP1xP1) *Point {
+ v.x.Multiply(&p.X, &p.T)
+ v.y.Multiply(&p.Y, &p.Z)
+ v.z.Multiply(&p.Z, &p.T)
+ v.t.Multiply(&p.X, &p.Y)
+ return v
+}
+
+func (v *Point) fromP2(p *projP2) *Point {
+ v.x.Multiply(&p.X, &p.Z)
+ v.y.Multiply(&p.Y, &p.Z)
+ v.z.Square(&p.Z)
+ v.t.Multiply(&p.X, &p.Y)
+ return v
+}
+
+// d is a constant in the curve equation.
+var d, _ = new(field.Element).SetBytes([]byte{
+ 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
+ 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
+ 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
+ 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52})
+var d2 = new(field.Element).Add(d, d)
+
+func (v *projCached) FromP3(p *Point) *projCached {
+ v.YplusX.Add(&p.y, &p.x)
+ v.YminusX.Subtract(&p.y, &p.x)
+ v.Z.Set(&p.z)
+ v.T2d.Multiply(&p.t, d2)
+ return v
+}
+
+func (v *affineCached) FromP3(p *Point) *affineCached {
+ v.YplusX.Add(&p.y, &p.x)
+ v.YminusX.Subtract(&p.y, &p.x)
+ v.T2d.Multiply(&p.t, d2)
+
+ var invZ field.Element
+ invZ.Invert(&p.z)
+ v.YplusX.Multiply(&v.YplusX, &invZ)
+ v.YminusX.Multiply(&v.YminusX, &invZ)
+ v.T2d.Multiply(&v.T2d, &invZ)
+ return v
+}
+
+// (Re)addition and subtraction.
+
+// Add sets v = p + q, and returns v.
+func (v *Point) Add(p, q *Point) *Point {
+ checkInitialized(p, q)
+ qCached := new(projCached).FromP3(q)
+ result := new(projP1xP1).Add(p, qCached)
+ return v.fromP1xP1(result)
+}
+
+// Subtract sets v = p - q, and returns v.
+func (v *Point) Subtract(p, q *Point) *Point {
+ checkInitialized(p, q)
+ qCached := new(projCached).FromP3(q)
+ result := new(projP1xP1).Sub(p, qCached)
+ return v.fromP1xP1(result)
+}
+
+func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 {
+ var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
+
+ YplusX.Add(&p.y, &p.x)
+ YminusX.Subtract(&p.y, &p.x)
+
+ PP.Multiply(&YplusX, &q.YplusX)
+ MM.Multiply(&YminusX, &q.YminusX)
+ TT2d.Multiply(&p.t, &q.T2d)
+ ZZ2.Multiply(&p.z, &q.Z)
+
+ ZZ2.Add(&ZZ2, &ZZ2)
+
+ v.X.Subtract(&PP, &MM)
+ v.Y.Add(&PP, &MM)
+ v.Z.Add(&ZZ2, &TT2d)
+ v.T.Subtract(&ZZ2, &TT2d)
+ return v
+}
+
+func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 {
+ var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
+
+ YplusX.Add(&p.y, &p.x)
+ YminusX.Subtract(&p.y, &p.x)
+
+ PP.Multiply(&YplusX, &q.YminusX) // flipped sign
+ MM.Multiply(&YminusX, &q.YplusX) // flipped sign
+ TT2d.Multiply(&p.t, &q.T2d)
+ ZZ2.Multiply(&p.z, &q.Z)
+
+ ZZ2.Add(&ZZ2, &ZZ2)
+
+ v.X.Subtract(&PP, &MM)
+ v.Y.Add(&PP, &MM)
+ v.Z.Subtract(&ZZ2, &TT2d) // flipped sign
+ v.T.Add(&ZZ2, &TT2d) // flipped sign
+ return v
+}
+
+func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 {
+ var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
+
+ YplusX.Add(&p.y, &p.x)
+ YminusX.Subtract(&p.y, &p.x)
+
+ PP.Multiply(&YplusX, &q.YplusX)
+ MM.Multiply(&YminusX, &q.YminusX)
+ TT2d.Multiply(&p.t, &q.T2d)
+
+ Z2.Add(&p.z, &p.z)
+
+ v.X.Subtract(&PP, &MM)
+ v.Y.Add(&PP, &MM)
+ v.Z.Add(&Z2, &TT2d)
+ v.T.Subtract(&Z2, &TT2d)
+ return v
+}
+
+func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 {
+ var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
+
+ YplusX.Add(&p.y, &p.x)
+ YminusX.Subtract(&p.y, &p.x)
+
+ PP.Multiply(&YplusX, &q.YminusX) // flipped sign
+ MM.Multiply(&YminusX, &q.YplusX) // flipped sign
+ TT2d.Multiply(&p.t, &q.T2d)
+
+ Z2.Add(&p.z, &p.z)
+
+ v.X.Subtract(&PP, &MM)
+ v.Y.Add(&PP, &MM)
+ v.Z.Subtract(&Z2, &TT2d) // flipped sign
+ v.T.Add(&Z2, &TT2d) // flipped sign
+ return v
+}
+
+// Doubling.
+
+func (v *projP1xP1) Double(p *projP2) *projP1xP1 {
+ var XX, YY, ZZ2, XplusYsq field.Element
+
+ XX.Square(&p.X)
+ YY.Square(&p.Y)
+ ZZ2.Square(&p.Z)
+ ZZ2.Add(&ZZ2, &ZZ2)
+ XplusYsq.Add(&p.X, &p.Y)
+ XplusYsq.Square(&XplusYsq)
+
+ v.Y.Add(&YY, &XX)
+ v.Z.Subtract(&YY, &XX)
+
+ v.X.Subtract(&XplusYsq, &v.Y)
+ v.T.Subtract(&ZZ2, &v.Z)
+ return v
+}
+
+// Negation.
+
+// Negate sets v = -p, and returns v.
+func (v *Point) Negate(p *Point) *Point {
+ checkInitialized(p)
+ v.x.Negate(&p.x)
+ v.y.Set(&p.y)
+ v.z.Set(&p.z)
+ v.t.Negate(&p.t)
+ return v
+}
+
+// Equal returns 1 if v is equivalent to u, and 0 otherwise.
+func (v *Point) Equal(u *Point) int {
+ checkInitialized(v, u)
+
+ var t1, t2, t3, t4 field.Element
+ t1.Multiply(&v.x, &u.z)
+ t2.Multiply(&u.x, &v.z)
+ t3.Multiply(&v.y, &u.z)
+ t4.Multiply(&u.y, &v.z)
+
+ return t1.Equal(&t2) & t3.Equal(&t4)
+}
+
+// Constant-time operations
+
+// Select sets v to a if cond == 1 and to b if cond == 0.
+func (v *projCached) Select(a, b *projCached, cond int) *projCached {
+ v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
+ v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
+ v.Z.Select(&a.Z, &b.Z, cond)
+ v.T2d.Select(&a.T2d, &b.T2d, cond)
+ return v
+}
+
+// Select sets v to a if cond == 1 and to b if cond == 0.
+func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached {
+ v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
+ v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
+ v.T2d.Select(&a.T2d, &b.T2d, cond)
+ return v
+}
+
+// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
+func (v *projCached) CondNeg(cond int) *projCached {
+ v.YplusX.Swap(&v.YminusX, cond)
+ v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
+ return v
+}
+
+// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
+func (v *affineCached) CondNeg(cond int) *affineCached {
+ v.YplusX.Swap(&v.YminusX, cond)
+ v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
+ return v
+}
diff --git a/vendor/filippo.io/edwards25519/extra.go b/vendor/filippo.io/edwards25519/extra.go
new file mode 100644
index 00000000..f5e59080
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/extra.go
@@ -0,0 +1,343 @@
+// Copyright (c) 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package edwards25519
+
+// This file contains additional functionality that is not included in the
+// upstream crypto/ed25519/internal/edwards25519 package.
+
+import (
+ "errors"
+
+ "filippo.io/edwards25519/field"
+)
+
+// ExtendedCoordinates returns v in extended coordinates (X:Y:Z:T) where
+// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
+func (v *Point) ExtendedCoordinates() (X, Y, Z, T *field.Element) {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap. Don't change the style without making
+ // sure it doesn't increase the inliner cost.
+ var e [4]field.Element
+ X, Y, Z, T = v.extendedCoordinates(&e)
+ return
+}
+
+func (v *Point) extendedCoordinates(e *[4]field.Element) (X, Y, Z, T *field.Element) {
+ checkInitialized(v)
+ X = e[0].Set(&v.x)
+ Y = e[1].Set(&v.y)
+ Z = e[2].Set(&v.z)
+ T = e[3].Set(&v.t)
+ return
+}
+
+// SetExtendedCoordinates sets v = (X:Y:Z:T) in extended coordinates where
+// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
+//
+// If the coordinates are invalid or don't represent a valid point on the curve,
+// SetExtendedCoordinates returns nil and an error and the receiver is
+// unchanged. Otherwise, SetExtendedCoordinates returns v.
+func (v *Point) SetExtendedCoordinates(X, Y, Z, T *field.Element) (*Point, error) {
+ if !isOnCurve(X, Y, Z, T) {
+ return nil, errors.New("edwards25519: invalid point coordinates")
+ }
+ v.x.Set(X)
+ v.y.Set(Y)
+ v.z.Set(Z)
+ v.t.Set(T)
+ return v, nil
+}
+
+func isOnCurve(X, Y, Z, T *field.Element) bool {
+ var lhs, rhs field.Element
+ XX := new(field.Element).Square(X)
+ YY := new(field.Element).Square(Y)
+ ZZ := new(field.Element).Square(Z)
+ TT := new(field.Element).Square(T)
+ // -x² + y² = 1 + dx²y²
+ // -(X/Z)² + (Y/Z)² = 1 + d(T/Z)²
+ // -X² + Y² = Z² + dT²
+ lhs.Subtract(YY, XX)
+ rhs.Multiply(d, TT).Add(&rhs, ZZ)
+ if lhs.Equal(&rhs) != 1 {
+ return false
+ }
+ // xy = T/Z
+ // XY/Z² = T/Z
+ // XY = TZ
+ lhs.Multiply(X, Y)
+ rhs.Multiply(T, Z)
+ return lhs.Equal(&rhs) == 1
+}
+
+// BytesMontgomery converts v to a point on the birationally-equivalent
+// Curve25519 Montgomery curve, and returns its canonical 32 bytes encoding
+// according to RFC 7748.
+//
+// Note that BytesMontgomery only encodes the u-coordinate, so v and -v encode
+// to the same value. If v is the identity point, BytesMontgomery returns 32
+// zero bytes, analogously to the X25519 function.
+func (v *Point) BytesMontgomery() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var buf [32]byte
+ return v.bytesMontgomery(&buf)
+}
+
+func (v *Point) bytesMontgomery(buf *[32]byte) []byte {
+ checkInitialized(v)
+
+ // RFC 7748, Section 4.1 provides the bilinear map to calculate the
+ // Montgomery u-coordinate
+ //
+ // u = (1 + y) / (1 - y)
+ //
+ // where y = Y / Z.
+
+ var y, recip, u field.Element
+
+ y.Multiply(&v.y, y.Invert(&v.z)) // y = Y / Z
+ recip.Invert(recip.Subtract(feOne, &y)) // r = 1/(1 - y)
+ u.Multiply(u.Add(feOne, &y), &recip) // u = (1 + y)*r
+
+ return copyFieldElement(buf, &u)
+}
+
+// MultByCofactor sets v = 8 * p, and returns v.
+func (v *Point) MultByCofactor(p *Point) *Point {
+ checkInitialized(p)
+ result := projP1xP1{}
+ pp := (&projP2{}).FromP3(p)
+ result.Double(pp)
+ pp.FromP1xP1(&result)
+ result.Double(pp)
+ pp.FromP1xP1(&result)
+ result.Double(pp)
+ return v.fromP1xP1(&result)
+}
+
+// Given k > 0, set s = s**(2*i).
+func (s *Scalar) pow2k(k int) {
+ for i := 0; i < k; i++ {
+ s.Multiply(s, s)
+ }
+}
+
+// Invert sets s to the inverse of a nonzero scalar v, and returns s.
+//
+// If t is zero, Invert returns zero.
+func (s *Scalar) Invert(t *Scalar) *Scalar {
+ // Uses a hardcoded sliding window of width 4.
+ var table [8]Scalar
+ var tt Scalar
+ tt.Multiply(t, t)
+ table[0] = *t
+ for i := 0; i < 7; i++ {
+ table[i+1].Multiply(&table[i], &tt)
+ }
+ // Now table = [t**1, t**3, t**7, t**11, t**13, t**15]
+ // so t**k = t[k/2] for odd k
+
+ // To compute the sliding window digits, use the following Sage script:
+
+ // sage: import itertools
+ // sage: def sliding_window(w,k):
+ // ....: digits = []
+ // ....: while k > 0:
+ // ....: if k % 2 == 1:
+ // ....: kmod = k % (2**w)
+ // ....: digits.append(kmod)
+ // ....: k = k - kmod
+ // ....: else:
+ // ....: digits.append(0)
+ // ....: k = k // 2
+ // ....: return digits
+
+ // Now we can compute s roughly as follows:
+
+ // sage: s = 1
+ // sage: for coeff in reversed(sliding_window(4,l-2)):
+ // ....: s = s*s
+ // ....: if coeff > 0 :
+ // ....: s = s*t**coeff
+
+ // This works on one bit at a time, with many runs of zeros.
+ // The digits can be collapsed into [(count, coeff)] as follows:
+
+ // sage: [(len(list(group)),d) for d,group in itertools.groupby(sliding_window(4,l-2))]
+
+ // Entries of the form (k, 0) turn into pow2k(k)
+ // Entries of the form (1, coeff) turn into a squaring and then a table lookup.
+ // We can fold the squaring into the previous pow2k(k) as pow2k(k+1).
+
+ *s = table[1/2]
+ s.pow2k(127 + 1)
+ s.Multiply(s, &table[1/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[9/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[11/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[13/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[15/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[7/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[15/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[5/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[1/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[15/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[15/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[7/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[3/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[11/2])
+ s.pow2k(5 + 1)
+ s.Multiply(s, &table[11/2])
+ s.pow2k(9 + 1)
+ s.Multiply(s, &table[9/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[3/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[3/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[3/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[9/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[7/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[3/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[13/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[7/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[9/2])
+ s.pow2k(3 + 1)
+ s.Multiply(s, &table[15/2])
+ s.pow2k(4 + 1)
+ s.Multiply(s, &table[11/2])
+
+ return s
+}
+
+// MultiScalarMult sets v = sum(scalars[i] * points[i]), and returns v.
+//
+// Execution time depends only on the lengths of the two slices, which must match.
+func (v *Point) MultiScalarMult(scalars []*Scalar, points []*Point) *Point {
+ if len(scalars) != len(points) {
+ panic("edwards25519: called MultiScalarMult with different size inputs")
+ }
+ checkInitialized(points...)
+
+ // Proceed as in the single-base case, but share doublings
+ // between each point in the multiscalar equation.
+
+ // Build lookup tables for each point
+ tables := make([]projLookupTable, len(points))
+ for i := range tables {
+ tables[i].FromP3(points[i])
+ }
+ // Compute signed radix-16 digits for each scalar
+ digits := make([][64]int8, len(scalars))
+ for i := range digits {
+ digits[i] = scalars[i].signedRadix16()
+ }
+
+ // Unwrap first loop iteration to save computing 16*identity
+ multiple := &projCached{}
+ tmp1 := &projP1xP1{}
+ tmp2 := &projP2{}
+ // Lookup-and-add the appropriate multiple of each input point
+ for j := range tables {
+ tables[j].SelectInto(multiple, digits[j][63])
+ tmp1.Add(v, multiple) // tmp1 = v + x_(j,63)*Q in P1xP1 coords
+ v.fromP1xP1(tmp1) // update v
+ }
+ tmp2.FromP3(v) // set up tmp2 = v in P2 coords for next iteration
+ for i := 62; i >= 0; i-- {
+ tmp1.Double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 2*(prev) in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 4*(prev) in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 8*(prev) in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords
+ v.fromP1xP1(tmp1) // v = 16*(prev) in P3 coords
+ // Lookup-and-add the appropriate multiple of each input point
+ for j := range tables {
+ tables[j].SelectInto(multiple, digits[j][i])
+ tmp1.Add(v, multiple) // tmp1 = v + x_(j,i)*Q in P1xP1 coords
+ v.fromP1xP1(tmp1) // update v
+ }
+ tmp2.FromP3(v) // set up tmp2 = v in P2 coords for next iteration
+ }
+ return v
+}
+
+// VarTimeMultiScalarMult sets v = sum(scalars[i] * points[i]), and returns v.
+//
+// Execution time depends on the inputs.
+func (v *Point) VarTimeMultiScalarMult(scalars []*Scalar, points []*Point) *Point {
+ if len(scalars) != len(points) {
+ panic("edwards25519: called VarTimeMultiScalarMult with different size inputs")
+ }
+ checkInitialized(points...)
+
+ // Generalize double-base NAF computation to arbitrary sizes.
+ // Here all the points are dynamic, so we only use the smaller
+ // tables.
+
+ // Build lookup tables for each point
+ tables := make([]nafLookupTable5, len(points))
+ for i := range tables {
+ tables[i].FromP3(points[i])
+ }
+ // Compute a NAF for each scalar
+ nafs := make([][256]int8, len(scalars))
+ for i := range nafs {
+ nafs[i] = scalars[i].nonAdjacentForm(5)
+ }
+
+ multiple := &projCached{}
+ tmp1 := &projP1xP1{}
+ tmp2 := &projP2{}
+ tmp2.Zero()
+
+ // Move from high to low bits, doubling the accumulator
+ // at each iteration and checking whether there is a nonzero
+ // coefficient to look up a multiple of.
+ //
+ // Skip trying to find the first nonzero coefficent, because
+ // searching might be more work than a few extra doublings.
+ for i := 255; i >= 0; i-- {
+ tmp1.Double(tmp2)
+
+ for j := range nafs {
+ if nafs[j][i] > 0 {
+ v.fromP1xP1(tmp1)
+ tables[j].SelectInto(multiple, nafs[j][i])
+ tmp1.Add(v, multiple)
+ } else if nafs[j][i] < 0 {
+ v.fromP1xP1(tmp1)
+ tables[j].SelectInto(multiple, -nafs[j][i])
+ tmp1.Sub(v, multiple)
+ }
+ }
+
+ tmp2.FromP1xP1(tmp1)
+ }
+
+ v.fromP2(tmp2)
+ return v
+}
diff --git a/vendor/filippo.io/edwards25519/field/fe.go b/vendor/filippo.io/edwards25519/field/fe.go
new file mode 100644
index 00000000..e5f53859
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe.go
@@ -0,0 +1,419 @@
+// Copyright (c) 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package field implements fast arithmetic modulo 2^255-19.
+package field
+
+import (
+ "crypto/subtle"
+ "encoding/binary"
+ "errors"
+ "math/bits"
+)
+
+// Element represents an element of the field GF(2^255-19). Note that this
+// is not a cryptographically secure group, and should only be used to interact
+// with edwards25519.Point coordinates.
+//
+// This type works similarly to math/big.Int, and all arguments and receivers
+// are allowed to alias.
+//
+// The zero value is a valid zero element.
+type Element struct {
+ // An element t represents the integer
+ // t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
+ //
+ // Between operations, all limbs are expected to be lower than 2^52.
+ l0 uint64
+ l1 uint64
+ l2 uint64
+ l3 uint64
+ l4 uint64
+}
+
+const maskLow51Bits uint64 = (1 << 51) - 1
+
+var feZero = &Element{0, 0, 0, 0, 0}
+
+// Zero sets v = 0, and returns v.
+func (v *Element) Zero() *Element {
+ *v = *feZero
+ return v
+}
+
+var feOne = &Element{1, 0, 0, 0, 0}
+
+// One sets v = 1, and returns v.
+func (v *Element) One() *Element {
+ *v = *feOne
+ return v
+}
+
+// reduce reduces v modulo 2^255 - 19 and returns it.
+func (v *Element) reduce() *Element {
+ v.carryPropagate()
+
+ // After the light reduction we now have a field element representation
+ // v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
+
+ // If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
+ // generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
+ c := (v.l0 + 19) >> 51
+ c = (v.l1 + c) >> 51
+ c = (v.l2 + c) >> 51
+ c = (v.l3 + c) >> 51
+ c = (v.l4 + c) >> 51
+
+ // If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
+ // effectively applying the reduction identity to the carry.
+ v.l0 += 19 * c
+
+ v.l1 += v.l0 >> 51
+ v.l0 = v.l0 & maskLow51Bits
+ v.l2 += v.l1 >> 51
+ v.l1 = v.l1 & maskLow51Bits
+ v.l3 += v.l2 >> 51
+ v.l2 = v.l2 & maskLow51Bits
+ v.l4 += v.l3 >> 51
+ v.l3 = v.l3 & maskLow51Bits
+ // no additional carry
+ v.l4 = v.l4 & maskLow51Bits
+
+ return v
+}
+
+// Add sets v = a + b, and returns v.
+func (v *Element) Add(a, b *Element) *Element {
+ v.l0 = a.l0 + b.l0
+ v.l1 = a.l1 + b.l1
+ v.l2 = a.l2 + b.l2
+ v.l3 = a.l3 + b.l3
+ v.l4 = a.l4 + b.l4
+ // Using the generic implementation here is actually faster than the
+ // assembly. Probably because the body of this function is so simple that
+ // the compiler can figure out better optimizations by inlining the carry
+ // propagation.
+ return v.carryPropagateGeneric()
+}
+
+// Subtract sets v = a - b, and returns v.
+func (v *Element) Subtract(a, b *Element) *Element {
+ // We first add 2 * p, to guarantee the subtraction won't underflow, and
+ // then subtract b (which can be up to 2^255 + 2^13 * 19).
+ v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
+ v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
+ v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
+ v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
+ v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
+ return v.carryPropagate()
+}
+
+// Negate sets v = -a, and returns v.
+func (v *Element) Negate(a *Element) *Element {
+ return v.Subtract(feZero, a)
+}
+
+// Invert sets v = 1/z mod p, and returns v.
+//
+// If z == 0, Invert returns v = 0.
+func (v *Element) Invert(z *Element) *Element {
+ // Inversion is implemented as exponentiation with exponent p − 2. It uses the
+ // same sequence of 255 squarings and 11 multiplications as [Curve25519].
+ var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
+
+ z2.Square(z) // 2
+ t.Square(&z2) // 4
+ t.Square(&t) // 8
+ z9.Multiply(&t, z) // 9
+ z11.Multiply(&z9, &z2) // 11
+ t.Square(&z11) // 22
+ z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
+
+ t.Square(&z2_5_0) // 2^6 - 2^1
+ for i := 0; i < 4; i++ {
+ t.Square(&t) // 2^10 - 2^5
+ }
+ z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
+
+ t.Square(&z2_10_0) // 2^11 - 2^1
+ for i := 0; i < 9; i++ {
+ t.Square(&t) // 2^20 - 2^10
+ }
+ z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
+
+ t.Square(&z2_20_0) // 2^21 - 2^1
+ for i := 0; i < 19; i++ {
+ t.Square(&t) // 2^40 - 2^20
+ }
+ t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
+
+ t.Square(&t) // 2^41 - 2^1
+ for i := 0; i < 9; i++ {
+ t.Square(&t) // 2^50 - 2^10
+ }
+ z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
+
+ t.Square(&z2_50_0) // 2^51 - 2^1
+ for i := 0; i < 49; i++ {
+ t.Square(&t) // 2^100 - 2^50
+ }
+ z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
+
+ t.Square(&z2_100_0) // 2^101 - 2^1
+ for i := 0; i < 99; i++ {
+ t.Square(&t) // 2^200 - 2^100
+ }
+ t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
+
+ t.Square(&t) // 2^201 - 2^1
+ for i := 0; i < 49; i++ {
+ t.Square(&t) // 2^250 - 2^50
+ }
+ t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
+
+ t.Square(&t) // 2^251 - 2^1
+ t.Square(&t) // 2^252 - 2^2
+ t.Square(&t) // 2^253 - 2^3
+ t.Square(&t) // 2^254 - 2^4
+ t.Square(&t) // 2^255 - 2^5
+
+ return v.Multiply(&t, &z11) // 2^255 - 21
+}
+
+// Set sets v = a, and returns v.
+func (v *Element) Set(a *Element) *Element {
+ *v = *a
+ return v
+}
+
+// SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is
+// not of the right length, SetUniformBytes returns nil and an error, and the
+// receiver is unchanged.
+//
+// Consistent with RFC 7748, the most significant bit (the high bit of the
+// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
+// are accepted. Note that this is laxer than specified by RFC 8032.
+func (v *Element) SetBytes(x []byte) (*Element, error) {
+ if len(x) != 32 {
+ return nil, errors.New("edwards25519: invalid field element input size")
+ }
+
+ // Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
+ v.l0 = binary.LittleEndian.Uint64(x[0:8])
+ v.l0 &= maskLow51Bits
+ // Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
+ v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
+ v.l1 &= maskLow51Bits
+ // Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
+ v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
+ v.l2 &= maskLow51Bits
+ // Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
+ v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
+ v.l3 &= maskLow51Bits
+ // Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
+ // Note: not bytes 25:33, shift 4, to avoid overread.
+ v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
+ v.l4 &= maskLow51Bits
+
+ return v, nil
+}
+
+// Bytes returns the canonical 32-byte little-endian encoding of v.
+func (v *Element) Bytes() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [32]byte
+ return v.bytes(&out)
+}
+
+func (v *Element) bytes(out *[32]byte) []byte {
+ t := *v
+ t.reduce()
+
+ var buf [8]byte
+ for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
+ bitsOffset := i * 51
+ binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
+ for i, bb := range buf {
+ off := bitsOffset/8 + i
+ if off >= len(out) {
+ break
+ }
+ out[off] |= bb
+ }
+ }
+
+ return out[:]
+}
+
+// Equal returns 1 if v and u are equal, and 0 otherwise.
+func (v *Element) Equal(u *Element) int {
+ sa, sv := u.Bytes(), v.Bytes()
+ return subtle.ConstantTimeCompare(sa, sv)
+}
+
+// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
+func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
+
+// Select sets v to a if cond == 1, and to b if cond == 0.
+func (v *Element) Select(a, b *Element, cond int) *Element {
+ m := mask64Bits(cond)
+ v.l0 = (m & a.l0) | (^m & b.l0)
+ v.l1 = (m & a.l1) | (^m & b.l1)
+ v.l2 = (m & a.l2) | (^m & b.l2)
+ v.l3 = (m & a.l3) | (^m & b.l3)
+ v.l4 = (m & a.l4) | (^m & b.l4)
+ return v
+}
+
+// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
+func (v *Element) Swap(u *Element, cond int) {
+ m := mask64Bits(cond)
+ t := m & (v.l0 ^ u.l0)
+ v.l0 ^= t
+ u.l0 ^= t
+ t = m & (v.l1 ^ u.l1)
+ v.l1 ^= t
+ u.l1 ^= t
+ t = m & (v.l2 ^ u.l2)
+ v.l2 ^= t
+ u.l2 ^= t
+ t = m & (v.l3 ^ u.l3)
+ v.l3 ^= t
+ u.l3 ^= t
+ t = m & (v.l4 ^ u.l4)
+ v.l4 ^= t
+ u.l4 ^= t
+}
+
+// IsNegative returns 1 if v is negative, and 0 otherwise.
+func (v *Element) IsNegative() int {
+ return int(v.Bytes()[0] & 1)
+}
+
+// Absolute sets v to |u|, and returns v.
+func (v *Element) Absolute(u *Element) *Element {
+ return v.Select(new(Element).Negate(u), u, u.IsNegative())
+}
+
+// Multiply sets v = x * y, and returns v.
+func (v *Element) Multiply(x, y *Element) *Element {
+ feMul(v, x, y)
+ return v
+}
+
+// Square sets v = x * x, and returns v.
+func (v *Element) Square(x *Element) *Element {
+ feSquare(v, x)
+ return v
+}
+
+// Mult32 sets v = x * y, and returns v.
+func (v *Element) Mult32(x *Element, y uint32) *Element {
+ x0lo, x0hi := mul51(x.l0, y)
+ x1lo, x1hi := mul51(x.l1, y)
+ x2lo, x2hi := mul51(x.l2, y)
+ x3lo, x3hi := mul51(x.l3, y)
+ x4lo, x4hi := mul51(x.l4, y)
+ v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
+ v.l1 = x1lo + x0hi
+ v.l2 = x2lo + x1hi
+ v.l3 = x3lo + x2hi
+ v.l4 = x4lo + x3hi
+ // The hi portions are going to be only 32 bits, plus any previous excess,
+ // so we can skip the carry propagation.
+ return v
+}
+
+// mul51 returns lo + hi * 2⁵¹ = a * b.
+func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
+ mh, ml := bits.Mul64(a, uint64(b))
+ lo = ml & maskLow51Bits
+ hi = (mh << 13) | (ml >> 51)
+ return
+}
+
+// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
+func (v *Element) Pow22523(x *Element) *Element {
+ var t0, t1, t2 Element
+
+ t0.Square(x) // x^2
+ t1.Square(&t0) // x^4
+ t1.Square(&t1) // x^8
+ t1.Multiply(x, &t1) // x^9
+ t0.Multiply(&t0, &t1) // x^11
+ t0.Square(&t0) // x^22
+ t0.Multiply(&t1, &t0) // x^31
+ t1.Square(&t0) // x^62
+ for i := 1; i < 5; i++ { // x^992
+ t1.Square(&t1)
+ }
+ t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
+ t1.Square(&t0) // 2^11 - 2
+ for i := 1; i < 10; i++ { // 2^20 - 2^10
+ t1.Square(&t1)
+ }
+ t1.Multiply(&t1, &t0) // 2^20 - 1
+ t2.Square(&t1) // 2^21 - 2
+ for i := 1; i < 20; i++ { // 2^40 - 2^20
+ t2.Square(&t2)
+ }
+ t1.Multiply(&t2, &t1) // 2^40 - 1
+ t1.Square(&t1) // 2^41 - 2
+ for i := 1; i < 10; i++ { // 2^50 - 2^10
+ t1.Square(&t1)
+ }
+ t0.Multiply(&t1, &t0) // 2^50 - 1
+ t1.Square(&t0) // 2^51 - 2
+ for i := 1; i < 50; i++ { // 2^100 - 2^50
+ t1.Square(&t1)
+ }
+ t1.Multiply(&t1, &t0) // 2^100 - 1
+ t2.Square(&t1) // 2^101 - 2
+ for i := 1; i < 100; i++ { // 2^200 - 2^100
+ t2.Square(&t2)
+ }
+ t1.Multiply(&t2, &t1) // 2^200 - 1
+ t1.Square(&t1) // 2^201 - 2
+ for i := 1; i < 50; i++ { // 2^250 - 2^50
+ t1.Square(&t1)
+ }
+ t0.Multiply(&t1, &t0) // 2^250 - 1
+ t0.Square(&t0) // 2^251 - 2
+ t0.Square(&t0) // 2^252 - 4
+ return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
+}
+
+// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
+var sqrtM1 = &Element{1718705420411056, 234908883556509,
+ 2233514472574048, 2117202627021982, 765476049583133}
+
+// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
+//
+// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
+// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
+// and returns r and 0.
+func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
+ var a, b Element
+
+ // r = (u * v3) * (u * v7)^((p-5)/8)
+ v2 := a.Square(v)
+ uv3 := b.Multiply(u, b.Multiply(v2, v))
+ uv7 := a.Multiply(uv3, a.Square(v2))
+ r.Multiply(uv3, r.Pow22523(uv7))
+
+ check := a.Multiply(v, a.Square(r)) // check = v * r^2
+
+ uNeg := b.Negate(u)
+ correctSignSqrt := check.Equal(u)
+ flippedSignSqrt := check.Equal(uNeg)
+ flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
+
+ rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
+ // r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
+ r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
+
+ r.Absolute(r) // Choose the nonnegative square root.
+ return r, correctSignSqrt | flippedSignSqrt
+}
diff --git a/vendor/filippo.io/edwards25519/field/fe_amd64.go b/vendor/filippo.io/edwards25519/field/fe_amd64.go
new file mode 100644
index 00000000..44dc8e8c
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe_amd64.go
@@ -0,0 +1,13 @@
+// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
+
+// +build amd64,gc,!purego
+
+package field
+
+// feMul sets out = a * b. It works like feMulGeneric.
+//go:noescape
+func feMul(out *Element, a *Element, b *Element)
+
+// feSquare sets out = a * a. It works like feSquareGeneric.
+//go:noescape
+func feSquare(out *Element, a *Element)
diff --git a/vendor/filippo.io/edwards25519/field/fe_amd64.s b/vendor/filippo.io/edwards25519/field/fe_amd64.s
new file mode 100644
index 00000000..0aa1e86d
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe_amd64.s
@@ -0,0 +1,378 @@
+// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
+
+// +build amd64,gc,!purego
+
+#include "textflag.h"
+
+// func feMul(out *Element, a *Element, b *Element)
+TEXT ·feMul(SB), NOSPLIT, $0-24
+ MOVQ a+8(FP), CX
+ MOVQ b+16(FP), BX
+
+ // r0 = a0×b0
+ MOVQ (CX), AX
+ MULQ (BX)
+ MOVQ AX, DI
+ MOVQ DX, SI
+
+ // r0 += 19×a1×b4
+ MOVQ 8(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 32(BX)
+ ADDQ AX, DI
+ ADCQ DX, SI
+
+ // r0 += 19×a2×b3
+ MOVQ 16(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 24(BX)
+ ADDQ AX, DI
+ ADCQ DX, SI
+
+ // r0 += 19×a3×b2
+ MOVQ 24(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 16(BX)
+ ADDQ AX, DI
+ ADCQ DX, SI
+
+ // r0 += 19×a4×b1
+ MOVQ 32(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 8(BX)
+ ADDQ AX, DI
+ ADCQ DX, SI
+
+ // r1 = a0×b1
+ MOVQ (CX), AX
+ MULQ 8(BX)
+ MOVQ AX, R9
+ MOVQ DX, R8
+
+ // r1 += a1×b0
+ MOVQ 8(CX), AX
+ MULQ (BX)
+ ADDQ AX, R9
+ ADCQ DX, R8
+
+ // r1 += 19×a2×b4
+ MOVQ 16(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 32(BX)
+ ADDQ AX, R9
+ ADCQ DX, R8
+
+ // r1 += 19×a3×b3
+ MOVQ 24(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 24(BX)
+ ADDQ AX, R9
+ ADCQ DX, R8
+
+ // r1 += 19×a4×b2
+ MOVQ 32(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 16(BX)
+ ADDQ AX, R9
+ ADCQ DX, R8
+
+ // r2 = a0×b2
+ MOVQ (CX), AX
+ MULQ 16(BX)
+ MOVQ AX, R11
+ MOVQ DX, R10
+
+ // r2 += a1×b1
+ MOVQ 8(CX), AX
+ MULQ 8(BX)
+ ADDQ AX, R11
+ ADCQ DX, R10
+
+ // r2 += a2×b0
+ MOVQ 16(CX), AX
+ MULQ (BX)
+ ADDQ AX, R11
+ ADCQ DX, R10
+
+ // r2 += 19×a3×b4
+ MOVQ 24(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 32(BX)
+ ADDQ AX, R11
+ ADCQ DX, R10
+
+ // r2 += 19×a4×b3
+ MOVQ 32(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 24(BX)
+ ADDQ AX, R11
+ ADCQ DX, R10
+
+ // r3 = a0×b3
+ MOVQ (CX), AX
+ MULQ 24(BX)
+ MOVQ AX, R13
+ MOVQ DX, R12
+
+ // r3 += a1×b2
+ MOVQ 8(CX), AX
+ MULQ 16(BX)
+ ADDQ AX, R13
+ ADCQ DX, R12
+
+ // r3 += a2×b1
+ MOVQ 16(CX), AX
+ MULQ 8(BX)
+ ADDQ AX, R13
+ ADCQ DX, R12
+
+ // r3 += a3×b0
+ MOVQ 24(CX), AX
+ MULQ (BX)
+ ADDQ AX, R13
+ ADCQ DX, R12
+
+ // r3 += 19×a4×b4
+ MOVQ 32(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 32(BX)
+ ADDQ AX, R13
+ ADCQ DX, R12
+
+ // r4 = a0×b4
+ MOVQ (CX), AX
+ MULQ 32(BX)
+ MOVQ AX, R15
+ MOVQ DX, R14
+
+ // r4 += a1×b3
+ MOVQ 8(CX), AX
+ MULQ 24(BX)
+ ADDQ AX, R15
+ ADCQ DX, R14
+
+ // r4 += a2×b2
+ MOVQ 16(CX), AX
+ MULQ 16(BX)
+ ADDQ AX, R15
+ ADCQ DX, R14
+
+ // r4 += a3×b1
+ MOVQ 24(CX), AX
+ MULQ 8(BX)
+ ADDQ AX, R15
+ ADCQ DX, R14
+
+ // r4 += a4×b0
+ MOVQ 32(CX), AX
+ MULQ (BX)
+ ADDQ AX, R15
+ ADCQ DX, R14
+
+ // First reduction chain
+ MOVQ $0x0007ffffffffffff, AX
+ SHLQ $0x0d, DI, SI
+ SHLQ $0x0d, R9, R8
+ SHLQ $0x0d, R11, R10
+ SHLQ $0x0d, R13, R12
+ SHLQ $0x0d, R15, R14
+ ANDQ AX, DI
+ IMUL3Q $0x13, R14, R14
+ ADDQ R14, DI
+ ANDQ AX, R9
+ ADDQ SI, R9
+ ANDQ AX, R11
+ ADDQ R8, R11
+ ANDQ AX, R13
+ ADDQ R10, R13
+ ANDQ AX, R15
+ ADDQ R12, R15
+
+ // Second reduction chain (carryPropagate)
+ MOVQ DI, SI
+ SHRQ $0x33, SI
+ MOVQ R9, R8
+ SHRQ $0x33, R8
+ MOVQ R11, R10
+ SHRQ $0x33, R10
+ MOVQ R13, R12
+ SHRQ $0x33, R12
+ MOVQ R15, R14
+ SHRQ $0x33, R14
+ ANDQ AX, DI
+ IMUL3Q $0x13, R14, R14
+ ADDQ R14, DI
+ ANDQ AX, R9
+ ADDQ SI, R9
+ ANDQ AX, R11
+ ADDQ R8, R11
+ ANDQ AX, R13
+ ADDQ R10, R13
+ ANDQ AX, R15
+ ADDQ R12, R15
+
+ // Store output
+ MOVQ out+0(FP), AX
+ MOVQ DI, (AX)
+ MOVQ R9, 8(AX)
+ MOVQ R11, 16(AX)
+ MOVQ R13, 24(AX)
+ MOVQ R15, 32(AX)
+ RET
+
+// func feSquare(out *Element, a *Element)
+TEXT ·feSquare(SB), NOSPLIT, $0-16
+ MOVQ a+8(FP), CX
+
+ // r0 = l0×l0
+ MOVQ (CX), AX
+ MULQ (CX)
+ MOVQ AX, SI
+ MOVQ DX, BX
+
+ // r0 += 38×l1×l4
+ MOVQ 8(CX), AX
+ IMUL3Q $0x26, AX, AX
+ MULQ 32(CX)
+ ADDQ AX, SI
+ ADCQ DX, BX
+
+ // r0 += 38×l2×l3
+ MOVQ 16(CX), AX
+ IMUL3Q $0x26, AX, AX
+ MULQ 24(CX)
+ ADDQ AX, SI
+ ADCQ DX, BX
+
+ // r1 = 2×l0×l1
+ MOVQ (CX), AX
+ SHLQ $0x01, AX
+ MULQ 8(CX)
+ MOVQ AX, R8
+ MOVQ DX, DI
+
+ // r1 += 38×l2×l4
+ MOVQ 16(CX), AX
+ IMUL3Q $0x26, AX, AX
+ MULQ 32(CX)
+ ADDQ AX, R8
+ ADCQ DX, DI
+
+ // r1 += 19×l3×l3
+ MOVQ 24(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 24(CX)
+ ADDQ AX, R8
+ ADCQ DX, DI
+
+ // r2 = 2×l0×l2
+ MOVQ (CX), AX
+ SHLQ $0x01, AX
+ MULQ 16(CX)
+ MOVQ AX, R10
+ MOVQ DX, R9
+
+ // r2 += l1×l1
+ MOVQ 8(CX), AX
+ MULQ 8(CX)
+ ADDQ AX, R10
+ ADCQ DX, R9
+
+ // r2 += 38×l3×l4
+ MOVQ 24(CX), AX
+ IMUL3Q $0x26, AX, AX
+ MULQ 32(CX)
+ ADDQ AX, R10
+ ADCQ DX, R9
+
+ // r3 = 2×l0×l3
+ MOVQ (CX), AX
+ SHLQ $0x01, AX
+ MULQ 24(CX)
+ MOVQ AX, R12
+ MOVQ DX, R11
+
+ // r3 += 2×l1×l2
+ MOVQ 8(CX), AX
+ IMUL3Q $0x02, AX, AX
+ MULQ 16(CX)
+ ADDQ AX, R12
+ ADCQ DX, R11
+
+ // r3 += 19×l4×l4
+ MOVQ 32(CX), AX
+ IMUL3Q $0x13, AX, AX
+ MULQ 32(CX)
+ ADDQ AX, R12
+ ADCQ DX, R11
+
+ // r4 = 2×l0×l4
+ MOVQ (CX), AX
+ SHLQ $0x01, AX
+ MULQ 32(CX)
+ MOVQ AX, R14
+ MOVQ DX, R13
+
+ // r4 += 2×l1×l3
+ MOVQ 8(CX), AX
+ IMUL3Q $0x02, AX, AX
+ MULQ 24(CX)
+ ADDQ AX, R14
+ ADCQ DX, R13
+
+ // r4 += l2×l2
+ MOVQ 16(CX), AX
+ MULQ 16(CX)
+ ADDQ AX, R14
+ ADCQ DX, R13
+
+ // First reduction chain
+ MOVQ $0x0007ffffffffffff, AX
+ SHLQ $0x0d, SI, BX
+ SHLQ $0x0d, R8, DI
+ SHLQ $0x0d, R10, R9
+ SHLQ $0x0d, R12, R11
+ SHLQ $0x0d, R14, R13
+ ANDQ AX, SI
+ IMUL3Q $0x13, R13, R13
+ ADDQ R13, SI
+ ANDQ AX, R8
+ ADDQ BX, R8
+ ANDQ AX, R10
+ ADDQ DI, R10
+ ANDQ AX, R12
+ ADDQ R9, R12
+ ANDQ AX, R14
+ ADDQ R11, R14
+
+ // Second reduction chain (carryPropagate)
+ MOVQ SI, BX
+ SHRQ $0x33, BX
+ MOVQ R8, DI
+ SHRQ $0x33, DI
+ MOVQ R10, R9
+ SHRQ $0x33, R9
+ MOVQ R12, R11
+ SHRQ $0x33, R11
+ MOVQ R14, R13
+ SHRQ $0x33, R13
+ ANDQ AX, SI
+ IMUL3Q $0x13, R13, R13
+ ADDQ R13, SI
+ ANDQ AX, R8
+ ADDQ BX, R8
+ ANDQ AX, R10
+ ADDQ DI, R10
+ ANDQ AX, R12
+ ADDQ R9, R12
+ ANDQ AX, R14
+ ADDQ R11, R14
+
+ // Store output
+ MOVQ out+0(FP), AX
+ MOVQ SI, (AX)
+ MOVQ R8, 8(AX)
+ MOVQ R10, 16(AX)
+ MOVQ R12, 24(AX)
+ MOVQ R14, 32(AX)
+ RET
diff --git a/vendor/filippo.io/edwards25519/field/fe_amd64_noasm.go b/vendor/filippo.io/edwards25519/field/fe_amd64_noasm.go
new file mode 100644
index 00000000..ddb6c9b8
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe_amd64_noasm.go
@@ -0,0 +1,12 @@
+// Copyright (c) 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !amd64 || !gc || purego
+// +build !amd64 !gc purego
+
+package field
+
+func feMul(v, x, y *Element) { feMulGeneric(v, x, y) }
+
+func feSquare(v, x *Element) { feSquareGeneric(v, x) }
diff --git a/vendor/filippo.io/edwards25519/field/fe_arm64.go b/vendor/filippo.io/edwards25519/field/fe_arm64.go
new file mode 100644
index 00000000..af459ef5
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe_arm64.go
@@ -0,0 +1,16 @@
+// Copyright (c) 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build arm64 && gc && !purego
+// +build arm64,gc,!purego
+
+package field
+
+//go:noescape
+func carryPropagate(v *Element)
+
+func (v *Element) carryPropagate() *Element {
+ carryPropagate(v)
+ return v
+}
diff --git a/vendor/filippo.io/edwards25519/field/fe_arm64.s b/vendor/filippo.io/edwards25519/field/fe_arm64.s
new file mode 100644
index 00000000..751ab2ad
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe_arm64.s
@@ -0,0 +1,42 @@
+// Copyright (c) 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build arm64,gc,!purego
+
+#include "textflag.h"
+
+// carryPropagate works exactly like carryPropagateGeneric and uses the
+// same AND, ADD, and LSR+MADD instructions emitted by the compiler, but
+// avoids loading R0-R4 twice and uses LDP and STP.
+//
+// See https://golang.org/issues/43145 for the main compiler issue.
+//
+// func carryPropagate(v *Element)
+TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8
+ MOVD v+0(FP), R20
+
+ LDP 0(R20), (R0, R1)
+ LDP 16(R20), (R2, R3)
+ MOVD 32(R20), R4
+
+ AND $0x7ffffffffffff, R0, R10
+ AND $0x7ffffffffffff, R1, R11
+ AND $0x7ffffffffffff, R2, R12
+ AND $0x7ffffffffffff, R3, R13
+ AND $0x7ffffffffffff, R4, R14
+
+ ADD R0>>51, R11, R11
+ ADD R1>>51, R12, R12
+ ADD R2>>51, R13, R13
+ ADD R3>>51, R14, R14
+ // R4>>51 * 19 + R10 -> R10
+ LSR $51, R4, R21
+ MOVD $19, R22
+ MADD R22, R10, R21, R10
+
+ STP (R10, R11), 0(R20)
+ STP (R12, R13), 16(R20)
+ MOVD R14, 32(R20)
+
+ RET
diff --git a/vendor/filippo.io/edwards25519/field/fe_arm64_noasm.go b/vendor/filippo.io/edwards25519/field/fe_arm64_noasm.go
new file mode 100644
index 00000000..234a5b2e
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe_arm64_noasm.go
@@ -0,0 +1,12 @@
+// Copyright (c) 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !arm64 || !gc || purego
+// +build !arm64 !gc purego
+
+package field
+
+func (v *Element) carryPropagate() *Element {
+ return v.carryPropagateGeneric()
+}
diff --git a/vendor/filippo.io/edwards25519/field/fe_generic.go b/vendor/filippo.io/edwards25519/field/fe_generic.go
new file mode 100644
index 00000000..bccf8511
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/field/fe_generic.go
@@ -0,0 +1,264 @@
+// Copyright (c) 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package field
+
+import "math/bits"
+
+// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
+// bits.Mul64 and bits.Add64 intrinsics.
+type uint128 struct {
+ lo, hi uint64
+}
+
+// mul64 returns a * b.
+func mul64(a, b uint64) uint128 {
+ hi, lo := bits.Mul64(a, b)
+ return uint128{lo, hi}
+}
+
+// addMul64 returns v + a * b.
+func addMul64(v uint128, a, b uint64) uint128 {
+ hi, lo := bits.Mul64(a, b)
+ lo, c := bits.Add64(lo, v.lo, 0)
+ hi, _ = bits.Add64(hi, v.hi, c)
+ return uint128{lo, hi}
+}
+
+// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
+func shiftRightBy51(a uint128) uint64 {
+ return (a.hi << (64 - 51)) | (a.lo >> 51)
+}
+
+func feMulGeneric(v, a, b *Element) {
+ a0 := a.l0
+ a1 := a.l1
+ a2 := a.l2
+ a3 := a.l3
+ a4 := a.l4
+
+ b0 := b.l0
+ b1 := b.l1
+ b2 := b.l2
+ b3 := b.l3
+ b4 := b.l4
+
+ // Limb multiplication works like pen-and-paper columnar multiplication, but
+ // with 51-bit limbs instead of digits.
+ //
+ // a4 a3 a2 a1 a0 x
+ // b4 b3 b2 b1 b0 =
+ // ------------------------
+ // a4b0 a3b0 a2b0 a1b0 a0b0 +
+ // a4b1 a3b1 a2b1 a1b1 a0b1 +
+ // a4b2 a3b2 a2b2 a1b2 a0b2 +
+ // a4b3 a3b3 a2b3 a1b3 a0b3 +
+ // a4b4 a3b4 a2b4 a1b4 a0b4 =
+ // ----------------------------------------------
+ // r8 r7 r6 r5 r4 r3 r2 r1 r0
+ //
+ // We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
+ // reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
+ // r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
+ //
+ // Reduction can be carried out simultaneously to multiplication. For
+ // example, we do not compute r5: whenever the result of a multiplication
+ // belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
+ //
+ // a4b0 a3b0 a2b0 a1b0 a0b0 +
+ // a3b1 a2b1 a1b1 a0b1 19×a4b1 +
+ // a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +
+ // a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +
+ // a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =
+ // --------------------------------------
+ // r4 r3 r2 r1 r0
+ //
+ // Finally we add up the columns into wide, overlapping limbs.
+
+ a1_19 := a1 * 19
+ a2_19 := a2 * 19
+ a3_19 := a3 * 19
+ a4_19 := a4 * 19
+
+ // r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
+ r0 := mul64(a0, b0)
+ r0 = addMul64(r0, a1_19, b4)
+ r0 = addMul64(r0, a2_19, b3)
+ r0 = addMul64(r0, a3_19, b2)
+ r0 = addMul64(r0, a4_19, b1)
+
+ // r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
+ r1 := mul64(a0, b1)
+ r1 = addMul64(r1, a1, b0)
+ r1 = addMul64(r1, a2_19, b4)
+ r1 = addMul64(r1, a3_19, b3)
+ r1 = addMul64(r1, a4_19, b2)
+
+ // r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
+ r2 := mul64(a0, b2)
+ r2 = addMul64(r2, a1, b1)
+ r2 = addMul64(r2, a2, b0)
+ r2 = addMul64(r2, a3_19, b4)
+ r2 = addMul64(r2, a4_19, b3)
+
+ // r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
+ r3 := mul64(a0, b3)
+ r3 = addMul64(r3, a1, b2)
+ r3 = addMul64(r3, a2, b1)
+ r3 = addMul64(r3, a3, b0)
+ r3 = addMul64(r3, a4_19, b4)
+
+ // r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
+ r4 := mul64(a0, b4)
+ r4 = addMul64(r4, a1, b3)
+ r4 = addMul64(r4, a2, b2)
+ r4 = addMul64(r4, a3, b1)
+ r4 = addMul64(r4, a4, b0)
+
+ // After the multiplication, we need to reduce (carry) the five coefficients
+ // to obtain a result with limbs that are at most slightly larger than 2⁵¹,
+ // to respect the Element invariant.
+ //
+ // Overall, the reduction works the same as carryPropagate, except with
+ // wider inputs: we take the carry for each coefficient by shifting it right
+ // by 51, and add it to the limb above it. The top carry is multiplied by 19
+ // according to the reduction identity and added to the lowest limb.
+ //
+ // The largest coefficient (r0) will be at most 111 bits, which guarantees
+ // that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
+ //
+ // r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
+ // r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
+ // r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
+ // r0 < 2⁷ × 2⁵² × 2⁵²
+ // r0 < 2¹¹¹
+ //
+ // Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
+ // 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
+ // allows us to easily apply the reduction identity.
+ //
+ // r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
+ // r4 < 5 × 2⁵² × 2⁵²
+ // r4 < 2¹⁰⁷
+ //
+
+ c0 := shiftRightBy51(r0)
+ c1 := shiftRightBy51(r1)
+ c2 := shiftRightBy51(r2)
+ c3 := shiftRightBy51(r3)
+ c4 := shiftRightBy51(r4)
+
+ rr0 := r0.lo&maskLow51Bits + c4*19
+ rr1 := r1.lo&maskLow51Bits + c0
+ rr2 := r2.lo&maskLow51Bits + c1
+ rr3 := r3.lo&maskLow51Bits + c2
+ rr4 := r4.lo&maskLow51Bits + c3
+
+ // Now all coefficients fit into 64-bit registers but are still too large to
+ // be passed around as a Element. We therefore do one last carry chain,
+ // where the carries will be small enough to fit in the wiggle room above 2⁵¹.
+ *v = Element{rr0, rr1, rr2, rr3, rr4}
+ v.carryPropagate()
+}
+
+func feSquareGeneric(v, a *Element) {
+ l0 := a.l0
+ l1 := a.l1
+ l2 := a.l2
+ l3 := a.l3
+ l4 := a.l4
+
+ // Squaring works precisely like multiplication above, but thanks to its
+ // symmetry we get to group a few terms together.
+ //
+ // l4 l3 l2 l1 l0 x
+ // l4 l3 l2 l1 l0 =
+ // ------------------------
+ // l4l0 l3l0 l2l0 l1l0 l0l0 +
+ // l4l1 l3l1 l2l1 l1l1 l0l1 +
+ // l4l2 l3l2 l2l2 l1l2 l0l2 +
+ // l4l3 l3l3 l2l3 l1l3 l0l3 +
+ // l4l4 l3l4 l2l4 l1l4 l0l4 =
+ // ----------------------------------------------
+ // r8 r7 r6 r5 r4 r3 r2 r1 r0
+ //
+ // l4l0 l3l0 l2l0 l1l0 l0l0 +
+ // l3l1 l2l1 l1l1 l0l1 19×l4l1 +
+ // l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +
+ // l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +
+ // l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =
+ // --------------------------------------
+ // r4 r3 r2 r1 r0
+ //
+ // With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
+ // only three Mul64 and four Add64, instead of five and eight.
+
+ l0_2 := l0 * 2
+ l1_2 := l1 * 2
+
+ l1_38 := l1 * 38
+ l2_38 := l2 * 38
+ l3_38 := l3 * 38
+
+ l3_19 := l3 * 19
+ l4_19 := l4 * 19
+
+ // r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
+ r0 := mul64(l0, l0)
+ r0 = addMul64(r0, l1_38, l4)
+ r0 = addMul64(r0, l2_38, l3)
+
+ // r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
+ r1 := mul64(l0_2, l1)
+ r1 = addMul64(r1, l2_38, l4)
+ r1 = addMul64(r1, l3_19, l3)
+
+ // r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
+ r2 := mul64(l0_2, l2)
+ r2 = addMul64(r2, l1, l1)
+ r2 = addMul64(r2, l3_38, l4)
+
+ // r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
+ r3 := mul64(l0_2, l3)
+ r3 = addMul64(r3, l1_2, l2)
+ r3 = addMul64(r3, l4_19, l4)
+
+ // r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
+ r4 := mul64(l0_2, l4)
+ r4 = addMul64(r4, l1_2, l3)
+ r4 = addMul64(r4, l2, l2)
+
+ c0 := shiftRightBy51(r0)
+ c1 := shiftRightBy51(r1)
+ c2 := shiftRightBy51(r2)
+ c3 := shiftRightBy51(r3)
+ c4 := shiftRightBy51(r4)
+
+ rr0 := r0.lo&maskLow51Bits + c4*19
+ rr1 := r1.lo&maskLow51Bits + c0
+ rr2 := r2.lo&maskLow51Bits + c1
+ rr3 := r3.lo&maskLow51Bits + c2
+ rr4 := r4.lo&maskLow51Bits + c3
+
+ *v = Element{rr0, rr1, rr2, rr3, rr4}
+ v.carryPropagate()
+}
+
+// carryPropagate brings the limbs below 52 bits by applying the reduction
+// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry.
+func (v *Element) carryPropagateGeneric() *Element {
+ c0 := v.l0 >> 51
+ c1 := v.l1 >> 51
+ c2 := v.l2 >> 51
+ c3 := v.l3 >> 51
+ c4 := v.l4 >> 51
+
+ v.l0 = v.l0&maskLow51Bits + c4*19
+ v.l1 = v.l1&maskLow51Bits + c0
+ v.l2 = v.l2&maskLow51Bits + c1
+ v.l3 = v.l3&maskLow51Bits + c2
+ v.l4 = v.l4&maskLow51Bits + c3
+
+ return v
+}
diff --git a/vendor/filippo.io/edwards25519/scalar.go b/vendor/filippo.io/edwards25519/scalar.go
new file mode 100644
index 00000000..f3da71ce
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/scalar.go
@@ -0,0 +1,1027 @@
+// Copyright (c) 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package edwards25519
+
+import (
+ "crypto/subtle"
+ "encoding/binary"
+ "errors"
+)
+
+// A Scalar is an integer modulo
+//
+// l = 2^252 + 27742317777372353535851937790883648493
+//
+// which is the prime order of the edwards25519 group.
+//
+// This type works similarly to math/big.Int, and all arguments and
+// receivers are allowed to alias.
+//
+// The zero value is a valid zero element.
+type Scalar struct {
+ // s is the Scalar value in little-endian. The value is always reduced
+ // between operations.
+ s [32]byte
+}
+
+var (
+ scZero = Scalar{[32]byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}
+
+ scOne = Scalar{[32]byte{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}
+
+ scMinusOne = Scalar{[32]byte{236, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16}}
+)
+
+// NewScalar returns a new zero Scalar.
+func NewScalar() *Scalar {
+ return &Scalar{}
+}
+
+// MultiplyAdd sets s = x * y + z mod l, and returns s.
+func (s *Scalar) MultiplyAdd(x, y, z *Scalar) *Scalar {
+ scMulAdd(&s.s, &x.s, &y.s, &z.s)
+ return s
+}
+
+// Add sets s = x + y mod l, and returns s.
+func (s *Scalar) Add(x, y *Scalar) *Scalar {
+ // s = 1 * x + y mod l
+ scMulAdd(&s.s, &scOne.s, &x.s, &y.s)
+ return s
+}
+
+// Subtract sets s = x - y mod l, and returns s.
+func (s *Scalar) Subtract(x, y *Scalar) *Scalar {
+ // s = -1 * y + x mod l
+ scMulAdd(&s.s, &scMinusOne.s, &y.s, &x.s)
+ return s
+}
+
+// Negate sets s = -x mod l, and returns s.
+func (s *Scalar) Negate(x *Scalar) *Scalar {
+ // s = -1 * x + 0 mod l
+ scMulAdd(&s.s, &scMinusOne.s, &x.s, &scZero.s)
+ return s
+}
+
+// Multiply sets s = x * y mod l, and returns s.
+func (s *Scalar) Multiply(x, y *Scalar) *Scalar {
+ // s = x * y + 0 mod l
+ scMulAdd(&s.s, &x.s, &y.s, &scZero.s)
+ return s
+}
+
+// Set sets s = x, and returns s.
+func (s *Scalar) Set(x *Scalar) *Scalar {
+ *s = *x
+ return s
+}
+
+// SetUniformBytes sets s to an uniformly distributed value given 64 uniformly
+// distributed random bytes. If x is not of the right length, SetUniformBytes
+// returns nil and an error, and the receiver is unchanged.
+func (s *Scalar) SetUniformBytes(x []byte) (*Scalar, error) {
+ if len(x) != 64 {
+ return nil, errors.New("edwards25519: invalid SetUniformBytes input length")
+ }
+ var wideBytes [64]byte
+ copy(wideBytes[:], x[:])
+ scReduce(&s.s, &wideBytes)
+ return s, nil
+}
+
+// SetCanonicalBytes sets s = x, where x is a 32-byte little-endian encoding of
+// s, and returns s. If x is not a canonical encoding of s, SetCanonicalBytes
+// returns nil and an error, and the receiver is unchanged.
+func (s *Scalar) SetCanonicalBytes(x []byte) (*Scalar, error) {
+ if len(x) != 32 {
+ return nil, errors.New("invalid scalar length")
+ }
+ ss := &Scalar{}
+ copy(ss.s[:], x)
+ if !isReduced(ss) {
+ return nil, errors.New("invalid scalar encoding")
+ }
+ s.s = ss.s
+ return s, nil
+}
+
+// isReduced returns whether the given scalar is reduced modulo l.
+func isReduced(s *Scalar) bool {
+ for i := len(s.s) - 1; i >= 0; i-- {
+ switch {
+ case s.s[i] > scMinusOne.s[i]:
+ return false
+ case s.s[i] < scMinusOne.s[i]:
+ return true
+ }
+ }
+ return true
+}
+
+// SetBytesWithClamping applies the buffer pruning described in RFC 8032,
+// Section 5.1.5 (also known as clamping) and sets s to the result. The input
+// must be 32 bytes, and it is not modified. If x is not of the right length,
+// SetBytesWithClamping returns nil and an error, and the receiver is unchanged.
+//
+// Note that since Scalar values are always reduced modulo the prime order of
+// the curve, the resulting value will not preserve any of the cofactor-clearing
+// properties that clamping is meant to provide. It will however work as
+// expected as long as it is applied to points on the prime order subgroup, like
+// in Ed25519. In fact, it is lost to history why RFC 8032 adopted the
+// irrelevant RFC 7748 clamping, but it is now required for compatibility.
+func (s *Scalar) SetBytesWithClamping(x []byte) (*Scalar, error) {
+ // The description above omits the purpose of the high bits of the clamping
+ // for brevity, but those are also lost to reductions, and are also
+ // irrelevant to edwards25519 as they protect against a specific
+ // implementation bug that was once observed in a generic Montgomery ladder.
+ if len(x) != 32 {
+ return nil, errors.New("edwards25519: invalid SetBytesWithClamping input length")
+ }
+ var wideBytes [64]byte
+ copy(wideBytes[:], x[:])
+ wideBytes[0] &= 248
+ wideBytes[31] &= 63
+ wideBytes[31] |= 64
+ scReduce(&s.s, &wideBytes)
+ return s, nil
+}
+
+// Bytes returns the canonical 32-byte little-endian encoding of s.
+func (s *Scalar) Bytes() []byte {
+ buf := make([]byte, 32)
+ copy(buf, s.s[:])
+ return buf
+}
+
+// Equal returns 1 if s and t are equal, and 0 otherwise.
+func (s *Scalar) Equal(t *Scalar) int {
+ return subtle.ConstantTimeCompare(s.s[:], t.s[:])
+}
+
+// scMulAdd and scReduce are ported from the public domain, “ref10”
+// implementation of ed25519 from SUPERCOP.
+
+func load3(in []byte) int64 {
+ r := int64(in[0])
+ r |= int64(in[1]) << 8
+ r |= int64(in[2]) << 16
+ return r
+}
+
+func load4(in []byte) int64 {
+ r := int64(in[0])
+ r |= int64(in[1]) << 8
+ r |= int64(in[2]) << 16
+ r |= int64(in[3]) << 24
+ return r
+}
+
+// Input:
+// a[0]+256*a[1]+...+256^31*a[31] = a
+// b[0]+256*b[1]+...+256^31*b[31] = b
+// c[0]+256*c[1]+...+256^31*c[31] = c
+//
+// Output:
+// s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l
+// where l = 2^252 + 27742317777372353535851937790883648493.
+func scMulAdd(s, a, b, c *[32]byte) {
+ a0 := 2097151 & load3(a[:])
+ a1 := 2097151 & (load4(a[2:]) >> 5)
+ a2 := 2097151 & (load3(a[5:]) >> 2)
+ a3 := 2097151 & (load4(a[7:]) >> 7)
+ a4 := 2097151 & (load4(a[10:]) >> 4)
+ a5 := 2097151 & (load3(a[13:]) >> 1)
+ a6 := 2097151 & (load4(a[15:]) >> 6)
+ a7 := 2097151 & (load3(a[18:]) >> 3)
+ a8 := 2097151 & load3(a[21:])
+ a9 := 2097151 & (load4(a[23:]) >> 5)
+ a10 := 2097151 & (load3(a[26:]) >> 2)
+ a11 := (load4(a[28:]) >> 7)
+ b0 := 2097151 & load3(b[:])
+ b1 := 2097151 & (load4(b[2:]) >> 5)
+ b2 := 2097151 & (load3(b[5:]) >> 2)
+ b3 := 2097151 & (load4(b[7:]) >> 7)
+ b4 := 2097151 & (load4(b[10:]) >> 4)
+ b5 := 2097151 & (load3(b[13:]) >> 1)
+ b6 := 2097151 & (load4(b[15:]) >> 6)
+ b7 := 2097151 & (load3(b[18:]) >> 3)
+ b8 := 2097151 & load3(b[21:])
+ b9 := 2097151 & (load4(b[23:]) >> 5)
+ b10 := 2097151 & (load3(b[26:]) >> 2)
+ b11 := (load4(b[28:]) >> 7)
+ c0 := 2097151 & load3(c[:])
+ c1 := 2097151 & (load4(c[2:]) >> 5)
+ c2 := 2097151 & (load3(c[5:]) >> 2)
+ c3 := 2097151 & (load4(c[7:]) >> 7)
+ c4 := 2097151 & (load4(c[10:]) >> 4)
+ c5 := 2097151 & (load3(c[13:]) >> 1)
+ c6 := 2097151 & (load4(c[15:]) >> 6)
+ c7 := 2097151 & (load3(c[18:]) >> 3)
+ c8 := 2097151 & load3(c[21:])
+ c9 := 2097151 & (load4(c[23:]) >> 5)
+ c10 := 2097151 & (load3(c[26:]) >> 2)
+ c11 := (load4(c[28:]) >> 7)
+ var carry [23]int64
+
+ s0 := c0 + a0*b0
+ s1 := c1 + a0*b1 + a1*b0
+ s2 := c2 + a0*b2 + a1*b1 + a2*b0
+ s3 := c3 + a0*b3 + a1*b2 + a2*b1 + a3*b0
+ s4 := c4 + a0*b4 + a1*b3 + a2*b2 + a3*b1 + a4*b0
+ s5 := c5 + a0*b5 + a1*b4 + a2*b3 + a3*b2 + a4*b1 + a5*b0
+ s6 := c6 + a0*b6 + a1*b5 + a2*b4 + a3*b3 + a4*b2 + a5*b1 + a6*b0
+ s7 := c7 + a0*b7 + a1*b6 + a2*b5 + a3*b4 + a4*b3 + a5*b2 + a6*b1 + a7*b0
+ s8 := c8 + a0*b8 + a1*b7 + a2*b6 + a3*b5 + a4*b4 + a5*b3 + a6*b2 + a7*b1 + a8*b0
+ s9 := c9 + a0*b9 + a1*b8 + a2*b7 + a3*b6 + a4*b5 + a5*b4 + a6*b3 + a7*b2 + a8*b1 + a9*b0
+ s10 := c10 + a0*b10 + a1*b9 + a2*b8 + a3*b7 + a4*b6 + a5*b5 + a6*b4 + a7*b3 + a8*b2 + a9*b1 + a10*b0
+ s11 := c11 + a0*b11 + a1*b10 + a2*b9 + a3*b8 + a4*b7 + a5*b6 + a6*b5 + a7*b4 + a8*b3 + a9*b2 + a10*b1 + a11*b0
+ s12 := a1*b11 + a2*b10 + a3*b9 + a4*b8 + a5*b7 + a6*b6 + a7*b5 + a8*b4 + a9*b3 + a10*b2 + a11*b1
+ s13 := a2*b11 + a3*b10 + a4*b9 + a5*b8 + a6*b7 + a7*b6 + a8*b5 + a9*b4 + a10*b3 + a11*b2
+ s14 := a3*b11 + a4*b10 + a5*b9 + a6*b8 + a7*b7 + a8*b6 + a9*b5 + a10*b4 + a11*b3
+ s15 := a4*b11 + a5*b10 + a6*b9 + a7*b8 + a8*b7 + a9*b6 + a10*b5 + a11*b4
+ s16 := a5*b11 + a6*b10 + a7*b9 + a8*b8 + a9*b7 + a10*b6 + a11*b5
+ s17 := a6*b11 + a7*b10 + a8*b9 + a9*b8 + a10*b7 + a11*b6
+ s18 := a7*b11 + a8*b10 + a9*b9 + a10*b8 + a11*b7
+ s19 := a8*b11 + a9*b10 + a10*b9 + a11*b8
+ s20 := a9*b11 + a10*b10 + a11*b9
+ s21 := a10*b11 + a11*b10
+ s22 := a11 * b11
+ s23 := int64(0)
+
+ carry[0] = (s0 + (1 << 20)) >> 21
+ s1 += carry[0]
+ s0 -= carry[0] << 21
+ carry[2] = (s2 + (1 << 20)) >> 21
+ s3 += carry[2]
+ s2 -= carry[2] << 21
+ carry[4] = (s4 + (1 << 20)) >> 21
+ s5 += carry[4]
+ s4 -= carry[4] << 21
+ carry[6] = (s6 + (1 << 20)) >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[8] = (s8 + (1 << 20)) >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[10] = (s10 + (1 << 20)) >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+ carry[12] = (s12 + (1 << 20)) >> 21
+ s13 += carry[12]
+ s12 -= carry[12] << 21
+ carry[14] = (s14 + (1 << 20)) >> 21
+ s15 += carry[14]
+ s14 -= carry[14] << 21
+ carry[16] = (s16 + (1 << 20)) >> 21
+ s17 += carry[16]
+ s16 -= carry[16] << 21
+ carry[18] = (s18 + (1 << 20)) >> 21
+ s19 += carry[18]
+ s18 -= carry[18] << 21
+ carry[20] = (s20 + (1 << 20)) >> 21
+ s21 += carry[20]
+ s20 -= carry[20] << 21
+ carry[22] = (s22 + (1 << 20)) >> 21
+ s23 += carry[22]
+ s22 -= carry[22] << 21
+
+ carry[1] = (s1 + (1 << 20)) >> 21
+ s2 += carry[1]
+ s1 -= carry[1] << 21
+ carry[3] = (s3 + (1 << 20)) >> 21
+ s4 += carry[3]
+ s3 -= carry[3] << 21
+ carry[5] = (s5 + (1 << 20)) >> 21
+ s6 += carry[5]
+ s5 -= carry[5] << 21
+ carry[7] = (s7 + (1 << 20)) >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[9] = (s9 + (1 << 20)) >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[11] = (s11 + (1 << 20)) >> 21
+ s12 += carry[11]
+ s11 -= carry[11] << 21
+ carry[13] = (s13 + (1 << 20)) >> 21
+ s14 += carry[13]
+ s13 -= carry[13] << 21
+ carry[15] = (s15 + (1 << 20)) >> 21
+ s16 += carry[15]
+ s15 -= carry[15] << 21
+ carry[17] = (s17 + (1 << 20)) >> 21
+ s18 += carry[17]
+ s17 -= carry[17] << 21
+ carry[19] = (s19 + (1 << 20)) >> 21
+ s20 += carry[19]
+ s19 -= carry[19] << 21
+ carry[21] = (s21 + (1 << 20)) >> 21
+ s22 += carry[21]
+ s21 -= carry[21] << 21
+
+ s11 += s23 * 666643
+ s12 += s23 * 470296
+ s13 += s23 * 654183
+ s14 -= s23 * 997805
+ s15 += s23 * 136657
+ s16 -= s23 * 683901
+ s23 = 0
+
+ s10 += s22 * 666643
+ s11 += s22 * 470296
+ s12 += s22 * 654183
+ s13 -= s22 * 997805
+ s14 += s22 * 136657
+ s15 -= s22 * 683901
+ s22 = 0
+
+ s9 += s21 * 666643
+ s10 += s21 * 470296
+ s11 += s21 * 654183
+ s12 -= s21 * 997805
+ s13 += s21 * 136657
+ s14 -= s21 * 683901
+ s21 = 0
+
+ s8 += s20 * 666643
+ s9 += s20 * 470296
+ s10 += s20 * 654183
+ s11 -= s20 * 997805
+ s12 += s20 * 136657
+ s13 -= s20 * 683901
+ s20 = 0
+
+ s7 += s19 * 666643
+ s8 += s19 * 470296
+ s9 += s19 * 654183
+ s10 -= s19 * 997805
+ s11 += s19 * 136657
+ s12 -= s19 * 683901
+ s19 = 0
+
+ s6 += s18 * 666643
+ s7 += s18 * 470296
+ s8 += s18 * 654183
+ s9 -= s18 * 997805
+ s10 += s18 * 136657
+ s11 -= s18 * 683901
+ s18 = 0
+
+ carry[6] = (s6 + (1 << 20)) >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[8] = (s8 + (1 << 20)) >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[10] = (s10 + (1 << 20)) >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+ carry[12] = (s12 + (1 << 20)) >> 21
+ s13 += carry[12]
+ s12 -= carry[12] << 21
+ carry[14] = (s14 + (1 << 20)) >> 21
+ s15 += carry[14]
+ s14 -= carry[14] << 21
+ carry[16] = (s16 + (1 << 20)) >> 21
+ s17 += carry[16]
+ s16 -= carry[16] << 21
+
+ carry[7] = (s7 + (1 << 20)) >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[9] = (s9 + (1 << 20)) >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[11] = (s11 + (1 << 20)) >> 21
+ s12 += carry[11]
+ s11 -= carry[11] << 21
+ carry[13] = (s13 + (1 << 20)) >> 21
+ s14 += carry[13]
+ s13 -= carry[13] << 21
+ carry[15] = (s15 + (1 << 20)) >> 21
+ s16 += carry[15]
+ s15 -= carry[15] << 21
+
+ s5 += s17 * 666643
+ s6 += s17 * 470296
+ s7 += s17 * 654183
+ s8 -= s17 * 997805
+ s9 += s17 * 136657
+ s10 -= s17 * 683901
+ s17 = 0
+
+ s4 += s16 * 666643
+ s5 += s16 * 470296
+ s6 += s16 * 654183
+ s7 -= s16 * 997805
+ s8 += s16 * 136657
+ s9 -= s16 * 683901
+ s16 = 0
+
+ s3 += s15 * 666643
+ s4 += s15 * 470296
+ s5 += s15 * 654183
+ s6 -= s15 * 997805
+ s7 += s15 * 136657
+ s8 -= s15 * 683901
+ s15 = 0
+
+ s2 += s14 * 666643
+ s3 += s14 * 470296
+ s4 += s14 * 654183
+ s5 -= s14 * 997805
+ s6 += s14 * 136657
+ s7 -= s14 * 683901
+ s14 = 0
+
+ s1 += s13 * 666643
+ s2 += s13 * 470296
+ s3 += s13 * 654183
+ s4 -= s13 * 997805
+ s5 += s13 * 136657
+ s6 -= s13 * 683901
+ s13 = 0
+
+ s0 += s12 * 666643
+ s1 += s12 * 470296
+ s2 += s12 * 654183
+ s3 -= s12 * 997805
+ s4 += s12 * 136657
+ s5 -= s12 * 683901
+ s12 = 0
+
+ carry[0] = (s0 + (1 << 20)) >> 21
+ s1 += carry[0]
+ s0 -= carry[0] << 21
+ carry[2] = (s2 + (1 << 20)) >> 21
+ s3 += carry[2]
+ s2 -= carry[2] << 21
+ carry[4] = (s4 + (1 << 20)) >> 21
+ s5 += carry[4]
+ s4 -= carry[4] << 21
+ carry[6] = (s6 + (1 << 20)) >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[8] = (s8 + (1 << 20)) >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[10] = (s10 + (1 << 20)) >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+
+ carry[1] = (s1 + (1 << 20)) >> 21
+ s2 += carry[1]
+ s1 -= carry[1] << 21
+ carry[3] = (s3 + (1 << 20)) >> 21
+ s4 += carry[3]
+ s3 -= carry[3] << 21
+ carry[5] = (s5 + (1 << 20)) >> 21
+ s6 += carry[5]
+ s5 -= carry[5] << 21
+ carry[7] = (s7 + (1 << 20)) >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[9] = (s9 + (1 << 20)) >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[11] = (s11 + (1 << 20)) >> 21
+ s12 += carry[11]
+ s11 -= carry[11] << 21
+
+ s0 += s12 * 666643
+ s1 += s12 * 470296
+ s2 += s12 * 654183
+ s3 -= s12 * 997805
+ s4 += s12 * 136657
+ s5 -= s12 * 683901
+ s12 = 0
+
+ carry[0] = s0 >> 21
+ s1 += carry[0]
+ s0 -= carry[0] << 21
+ carry[1] = s1 >> 21
+ s2 += carry[1]
+ s1 -= carry[1] << 21
+ carry[2] = s2 >> 21
+ s3 += carry[2]
+ s2 -= carry[2] << 21
+ carry[3] = s3 >> 21
+ s4 += carry[3]
+ s3 -= carry[3] << 21
+ carry[4] = s4 >> 21
+ s5 += carry[4]
+ s4 -= carry[4] << 21
+ carry[5] = s5 >> 21
+ s6 += carry[5]
+ s5 -= carry[5] << 21
+ carry[6] = s6 >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[7] = s7 >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[8] = s8 >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[9] = s9 >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[10] = s10 >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+ carry[11] = s11 >> 21
+ s12 += carry[11]
+ s11 -= carry[11] << 21
+
+ s0 += s12 * 666643
+ s1 += s12 * 470296
+ s2 += s12 * 654183
+ s3 -= s12 * 997805
+ s4 += s12 * 136657
+ s5 -= s12 * 683901
+ s12 = 0
+
+ carry[0] = s0 >> 21
+ s1 += carry[0]
+ s0 -= carry[0] << 21
+ carry[1] = s1 >> 21
+ s2 += carry[1]
+ s1 -= carry[1] << 21
+ carry[2] = s2 >> 21
+ s3 += carry[2]
+ s2 -= carry[2] << 21
+ carry[3] = s3 >> 21
+ s4 += carry[3]
+ s3 -= carry[3] << 21
+ carry[4] = s4 >> 21
+ s5 += carry[4]
+ s4 -= carry[4] << 21
+ carry[5] = s5 >> 21
+ s6 += carry[5]
+ s5 -= carry[5] << 21
+ carry[6] = s6 >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[7] = s7 >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[8] = s8 >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[9] = s9 >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[10] = s10 >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+
+ s[0] = byte(s0 >> 0)
+ s[1] = byte(s0 >> 8)
+ s[2] = byte((s0 >> 16) | (s1 << 5))
+ s[3] = byte(s1 >> 3)
+ s[4] = byte(s1 >> 11)
+ s[5] = byte((s1 >> 19) | (s2 << 2))
+ s[6] = byte(s2 >> 6)
+ s[7] = byte((s2 >> 14) | (s3 << 7))
+ s[8] = byte(s3 >> 1)
+ s[9] = byte(s3 >> 9)
+ s[10] = byte((s3 >> 17) | (s4 << 4))
+ s[11] = byte(s4 >> 4)
+ s[12] = byte(s4 >> 12)
+ s[13] = byte((s4 >> 20) | (s5 << 1))
+ s[14] = byte(s5 >> 7)
+ s[15] = byte((s5 >> 15) | (s6 << 6))
+ s[16] = byte(s6 >> 2)
+ s[17] = byte(s6 >> 10)
+ s[18] = byte((s6 >> 18) | (s7 << 3))
+ s[19] = byte(s7 >> 5)
+ s[20] = byte(s7 >> 13)
+ s[21] = byte(s8 >> 0)
+ s[22] = byte(s8 >> 8)
+ s[23] = byte((s8 >> 16) | (s9 << 5))
+ s[24] = byte(s9 >> 3)
+ s[25] = byte(s9 >> 11)
+ s[26] = byte((s9 >> 19) | (s10 << 2))
+ s[27] = byte(s10 >> 6)
+ s[28] = byte((s10 >> 14) | (s11 << 7))
+ s[29] = byte(s11 >> 1)
+ s[30] = byte(s11 >> 9)
+ s[31] = byte(s11 >> 17)
+}
+
+// Input:
+// s[0]+256*s[1]+...+256^63*s[63] = s
+//
+// Output:
+// s[0]+256*s[1]+...+256^31*s[31] = s mod l
+// where l = 2^252 + 27742317777372353535851937790883648493.
+func scReduce(out *[32]byte, s *[64]byte) {
+ s0 := 2097151 & load3(s[:])
+ s1 := 2097151 & (load4(s[2:]) >> 5)
+ s2 := 2097151 & (load3(s[5:]) >> 2)
+ s3 := 2097151 & (load4(s[7:]) >> 7)
+ s4 := 2097151 & (load4(s[10:]) >> 4)
+ s5 := 2097151 & (load3(s[13:]) >> 1)
+ s6 := 2097151 & (load4(s[15:]) >> 6)
+ s7 := 2097151 & (load3(s[18:]) >> 3)
+ s8 := 2097151 & load3(s[21:])
+ s9 := 2097151 & (load4(s[23:]) >> 5)
+ s10 := 2097151 & (load3(s[26:]) >> 2)
+ s11 := 2097151 & (load4(s[28:]) >> 7)
+ s12 := 2097151 & (load4(s[31:]) >> 4)
+ s13 := 2097151 & (load3(s[34:]) >> 1)
+ s14 := 2097151 & (load4(s[36:]) >> 6)
+ s15 := 2097151 & (load3(s[39:]) >> 3)
+ s16 := 2097151 & load3(s[42:])
+ s17 := 2097151 & (load4(s[44:]) >> 5)
+ s18 := 2097151 & (load3(s[47:]) >> 2)
+ s19 := 2097151 & (load4(s[49:]) >> 7)
+ s20 := 2097151 & (load4(s[52:]) >> 4)
+ s21 := 2097151 & (load3(s[55:]) >> 1)
+ s22 := 2097151 & (load4(s[57:]) >> 6)
+ s23 := (load4(s[60:]) >> 3)
+
+ s11 += s23 * 666643
+ s12 += s23 * 470296
+ s13 += s23 * 654183
+ s14 -= s23 * 997805
+ s15 += s23 * 136657
+ s16 -= s23 * 683901
+ s23 = 0
+
+ s10 += s22 * 666643
+ s11 += s22 * 470296
+ s12 += s22 * 654183
+ s13 -= s22 * 997805
+ s14 += s22 * 136657
+ s15 -= s22 * 683901
+ s22 = 0
+
+ s9 += s21 * 666643
+ s10 += s21 * 470296
+ s11 += s21 * 654183
+ s12 -= s21 * 997805
+ s13 += s21 * 136657
+ s14 -= s21 * 683901
+ s21 = 0
+
+ s8 += s20 * 666643
+ s9 += s20 * 470296
+ s10 += s20 * 654183
+ s11 -= s20 * 997805
+ s12 += s20 * 136657
+ s13 -= s20 * 683901
+ s20 = 0
+
+ s7 += s19 * 666643
+ s8 += s19 * 470296
+ s9 += s19 * 654183
+ s10 -= s19 * 997805
+ s11 += s19 * 136657
+ s12 -= s19 * 683901
+ s19 = 0
+
+ s6 += s18 * 666643
+ s7 += s18 * 470296
+ s8 += s18 * 654183
+ s9 -= s18 * 997805
+ s10 += s18 * 136657
+ s11 -= s18 * 683901
+ s18 = 0
+
+ var carry [17]int64
+
+ carry[6] = (s6 + (1 << 20)) >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[8] = (s8 + (1 << 20)) >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[10] = (s10 + (1 << 20)) >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+ carry[12] = (s12 + (1 << 20)) >> 21
+ s13 += carry[12]
+ s12 -= carry[12] << 21
+ carry[14] = (s14 + (1 << 20)) >> 21
+ s15 += carry[14]
+ s14 -= carry[14] << 21
+ carry[16] = (s16 + (1 << 20)) >> 21
+ s17 += carry[16]
+ s16 -= carry[16] << 21
+
+ carry[7] = (s7 + (1 << 20)) >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[9] = (s9 + (1 << 20)) >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[11] = (s11 + (1 << 20)) >> 21
+ s12 += carry[11]
+ s11 -= carry[11] << 21
+ carry[13] = (s13 + (1 << 20)) >> 21
+ s14 += carry[13]
+ s13 -= carry[13] << 21
+ carry[15] = (s15 + (1 << 20)) >> 21
+ s16 += carry[15]
+ s15 -= carry[15] << 21
+
+ s5 += s17 * 666643
+ s6 += s17 * 470296
+ s7 += s17 * 654183
+ s8 -= s17 * 997805
+ s9 += s17 * 136657
+ s10 -= s17 * 683901
+ s17 = 0
+
+ s4 += s16 * 666643
+ s5 += s16 * 470296
+ s6 += s16 * 654183
+ s7 -= s16 * 997805
+ s8 += s16 * 136657
+ s9 -= s16 * 683901
+ s16 = 0
+
+ s3 += s15 * 666643
+ s4 += s15 * 470296
+ s5 += s15 * 654183
+ s6 -= s15 * 997805
+ s7 += s15 * 136657
+ s8 -= s15 * 683901
+ s15 = 0
+
+ s2 += s14 * 666643
+ s3 += s14 * 470296
+ s4 += s14 * 654183
+ s5 -= s14 * 997805
+ s6 += s14 * 136657
+ s7 -= s14 * 683901
+ s14 = 0
+
+ s1 += s13 * 666643
+ s2 += s13 * 470296
+ s3 += s13 * 654183
+ s4 -= s13 * 997805
+ s5 += s13 * 136657
+ s6 -= s13 * 683901
+ s13 = 0
+
+ s0 += s12 * 666643
+ s1 += s12 * 470296
+ s2 += s12 * 654183
+ s3 -= s12 * 997805
+ s4 += s12 * 136657
+ s5 -= s12 * 683901
+ s12 = 0
+
+ carry[0] = (s0 + (1 << 20)) >> 21
+ s1 += carry[0]
+ s0 -= carry[0] << 21
+ carry[2] = (s2 + (1 << 20)) >> 21
+ s3 += carry[2]
+ s2 -= carry[2] << 21
+ carry[4] = (s4 + (1 << 20)) >> 21
+ s5 += carry[4]
+ s4 -= carry[4] << 21
+ carry[6] = (s6 + (1 << 20)) >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[8] = (s8 + (1 << 20)) >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[10] = (s10 + (1 << 20)) >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+
+ carry[1] = (s1 + (1 << 20)) >> 21
+ s2 += carry[1]
+ s1 -= carry[1] << 21
+ carry[3] = (s3 + (1 << 20)) >> 21
+ s4 += carry[3]
+ s3 -= carry[3] << 21
+ carry[5] = (s5 + (1 << 20)) >> 21
+ s6 += carry[5]
+ s5 -= carry[5] << 21
+ carry[7] = (s7 + (1 << 20)) >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[9] = (s9 + (1 << 20)) >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[11] = (s11 + (1 << 20)) >> 21
+ s12 += carry[11]
+ s11 -= carry[11] << 21
+
+ s0 += s12 * 666643
+ s1 += s12 * 470296
+ s2 += s12 * 654183
+ s3 -= s12 * 997805
+ s4 += s12 * 136657
+ s5 -= s12 * 683901
+ s12 = 0
+
+ carry[0] = s0 >> 21
+ s1 += carry[0]
+ s0 -= carry[0] << 21
+ carry[1] = s1 >> 21
+ s2 += carry[1]
+ s1 -= carry[1] << 21
+ carry[2] = s2 >> 21
+ s3 += carry[2]
+ s2 -= carry[2] << 21
+ carry[3] = s3 >> 21
+ s4 += carry[3]
+ s3 -= carry[3] << 21
+ carry[4] = s4 >> 21
+ s5 += carry[4]
+ s4 -= carry[4] << 21
+ carry[5] = s5 >> 21
+ s6 += carry[5]
+ s5 -= carry[5] << 21
+ carry[6] = s6 >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[7] = s7 >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[8] = s8 >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[9] = s9 >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[10] = s10 >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+ carry[11] = s11 >> 21
+ s12 += carry[11]
+ s11 -= carry[11] << 21
+
+ s0 += s12 * 666643
+ s1 += s12 * 470296
+ s2 += s12 * 654183
+ s3 -= s12 * 997805
+ s4 += s12 * 136657
+ s5 -= s12 * 683901
+ s12 = 0
+
+ carry[0] = s0 >> 21
+ s1 += carry[0]
+ s0 -= carry[0] << 21
+ carry[1] = s1 >> 21
+ s2 += carry[1]
+ s1 -= carry[1] << 21
+ carry[2] = s2 >> 21
+ s3 += carry[2]
+ s2 -= carry[2] << 21
+ carry[3] = s3 >> 21
+ s4 += carry[3]
+ s3 -= carry[3] << 21
+ carry[4] = s4 >> 21
+ s5 += carry[4]
+ s4 -= carry[4] << 21
+ carry[5] = s5 >> 21
+ s6 += carry[5]
+ s5 -= carry[5] << 21
+ carry[6] = s6 >> 21
+ s7 += carry[6]
+ s6 -= carry[6] << 21
+ carry[7] = s7 >> 21
+ s8 += carry[7]
+ s7 -= carry[7] << 21
+ carry[8] = s8 >> 21
+ s9 += carry[8]
+ s8 -= carry[8] << 21
+ carry[9] = s9 >> 21
+ s10 += carry[9]
+ s9 -= carry[9] << 21
+ carry[10] = s10 >> 21
+ s11 += carry[10]
+ s10 -= carry[10] << 21
+
+ out[0] = byte(s0 >> 0)
+ out[1] = byte(s0 >> 8)
+ out[2] = byte((s0 >> 16) | (s1 << 5))
+ out[3] = byte(s1 >> 3)
+ out[4] = byte(s1 >> 11)
+ out[5] = byte((s1 >> 19) | (s2 << 2))
+ out[6] = byte(s2 >> 6)
+ out[7] = byte((s2 >> 14) | (s3 << 7))
+ out[8] = byte(s3 >> 1)
+ out[9] = byte(s3 >> 9)
+ out[10] = byte((s3 >> 17) | (s4 << 4))
+ out[11] = byte(s4 >> 4)
+ out[12] = byte(s4 >> 12)
+ out[13] = byte((s4 >> 20) | (s5 << 1))
+ out[14] = byte(s5 >> 7)
+ out[15] = byte((s5 >> 15) | (s6 << 6))
+ out[16] = byte(s6 >> 2)
+ out[17] = byte(s6 >> 10)
+ out[18] = byte((s6 >> 18) | (s7 << 3))
+ out[19] = byte(s7 >> 5)
+ out[20] = byte(s7 >> 13)
+ out[21] = byte(s8 >> 0)
+ out[22] = byte(s8 >> 8)
+ out[23] = byte((s8 >> 16) | (s9 << 5))
+ out[24] = byte(s9 >> 3)
+ out[25] = byte(s9 >> 11)
+ out[26] = byte((s9 >> 19) | (s10 << 2))
+ out[27] = byte(s10 >> 6)
+ out[28] = byte((s10 >> 14) | (s11 << 7))
+ out[29] = byte(s11 >> 1)
+ out[30] = byte(s11 >> 9)
+ out[31] = byte(s11 >> 17)
+}
+
+// nonAdjacentForm computes a width-w non-adjacent form for this scalar.
+//
+// w must be between 2 and 8, or nonAdjacentForm will panic.
+func (s *Scalar) nonAdjacentForm(w uint) [256]int8 {
+ // This implementation is adapted from the one
+ // in curve25519-dalek and is documented there:
+ // https://github.com/dalek-cryptography/curve25519-dalek/blob/f630041af28e9a405255f98a8a93adca18e4315b/src/scalar.rs#L800-L871
+ if s.s[31] > 127 {
+ panic("scalar has high bit set illegally")
+ }
+ if w < 2 {
+ panic("w must be at least 2 by the definition of NAF")
+ } else if w > 8 {
+ panic("NAF digits must fit in int8")
+ }
+
+ var naf [256]int8
+ var digits [5]uint64
+
+ for i := 0; i < 4; i++ {
+ digits[i] = binary.LittleEndian.Uint64(s.s[i*8:])
+ }
+
+ width := uint64(1 << w)
+ windowMask := uint64(width - 1)
+
+ pos := uint(0)
+ carry := uint64(0)
+ for pos < 256 {
+ indexU64 := pos / 64
+ indexBit := pos % 64
+ var bitBuf uint64
+ if indexBit < 64-w {
+ // This window's bits are contained in a single u64
+ bitBuf = digits[indexU64] >> indexBit
+ } else {
+ // Combine the current 64 bits with bits from the next 64
+ bitBuf = (digits[indexU64] >> indexBit) | (digits[1+indexU64] << (64 - indexBit))
+ }
+
+ // Add carry into the current window
+ window := carry + (bitBuf & windowMask)
+
+ if window&1 == 0 {
+ // If the window value is even, preserve the carry and continue.
+ // Why is the carry preserved?
+ // If carry == 0 and window & 1 == 0,
+ // then the next carry should be 0
+ // If carry == 1 and window & 1 == 0,
+ // then bit_buf & 1 == 1 so the next carry should be 1
+ pos += 1
+ continue
+ }
+
+ if window < width/2 {
+ carry = 0
+ naf[pos] = int8(window)
+ } else {
+ carry = 1
+ naf[pos] = int8(window) - int8(width)
+ }
+
+ pos += w
+ }
+ return naf
+}
+
+func (s *Scalar) signedRadix16() [64]int8 {
+ if s.s[31] > 127 {
+ panic("scalar has high bit set illegally")
+ }
+
+ var digits [64]int8
+
+ // Compute unsigned radix-16 digits:
+ for i := 0; i < 32; i++ {
+ digits[2*i] = int8(s.s[i] & 15)
+ digits[2*i+1] = int8((s.s[i] >> 4) & 15)
+ }
+
+ // Recenter coefficients:
+ for i := 0; i < 63; i++ {
+ carry := (digits[i] + 8) >> 4
+ digits[i] -= carry << 4
+ digits[i+1] += carry
+ }
+
+ return digits
+}
diff --git a/vendor/filippo.io/edwards25519/scalarmult.go b/vendor/filippo.io/edwards25519/scalarmult.go
new file mode 100644
index 00000000..f7ca3cef
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/scalarmult.go
@@ -0,0 +1,214 @@
+// Copyright (c) 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package edwards25519
+
+import "sync"
+
+// basepointTable is a set of 32 affineLookupTables, where table i is generated
+// from 256i * basepoint. It is precomputed the first time it's used.
+func basepointTable() *[32]affineLookupTable {
+ basepointTablePrecomp.initOnce.Do(func() {
+ p := NewGeneratorPoint()
+ for i := 0; i < 32; i++ {
+ basepointTablePrecomp.table[i].FromP3(p)
+ for j := 0; j < 8; j++ {
+ p.Add(p, p)
+ }
+ }
+ })
+ return &basepointTablePrecomp.table
+}
+
+var basepointTablePrecomp struct {
+ table [32]affineLookupTable
+ initOnce sync.Once
+}
+
+// ScalarBaseMult sets v = x * B, where B is the canonical generator, and
+// returns v.
+//
+// The scalar multiplication is done in constant time.
+func (v *Point) ScalarBaseMult(x *Scalar) *Point {
+ basepointTable := basepointTable()
+
+ // Write x = sum(x_i * 16^i) so x*B = sum( B*x_i*16^i )
+ // as described in the Ed25519 paper
+ //
+ // Group even and odd coefficients
+ // x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B
+ // + x_1*16^1*B + x_3*16^3*B + ... + x_63*16^63*B
+ // x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B
+ // + 16*( x_1*16^0*B + x_3*16^2*B + ... + x_63*16^62*B)
+ //
+ // We use a lookup table for each i to get x_i*16^(2*i)*B
+ // and do four doublings to multiply by 16.
+ digits := x.signedRadix16()
+
+ multiple := &affineCached{}
+ tmp1 := &projP1xP1{}
+ tmp2 := &projP2{}
+
+ // Accumulate the odd components first
+ v.Set(NewIdentityPoint())
+ for i := 1; i < 64; i += 2 {
+ basepointTable[i/2].SelectInto(multiple, digits[i])
+ tmp1.AddAffine(v, multiple)
+ v.fromP1xP1(tmp1)
+ }
+
+ // Multiply by 16
+ tmp2.FromP3(v) // tmp2 = v in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 2*v in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 2*v in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 4*v in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 4*v in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 8*v in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 8*v in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 16*v in P1xP1 coords
+ v.fromP1xP1(tmp1) // now v = 16*(odd components)
+
+ // Accumulate the even components
+ for i := 0; i < 64; i += 2 {
+ basepointTable[i/2].SelectInto(multiple, digits[i])
+ tmp1.AddAffine(v, multiple)
+ v.fromP1xP1(tmp1)
+ }
+
+ return v
+}
+
+// ScalarMult sets v = x * q, and returns v.
+//
+// The scalar multiplication is done in constant time.
+func (v *Point) ScalarMult(x *Scalar, q *Point) *Point {
+ checkInitialized(q)
+
+ var table projLookupTable
+ table.FromP3(q)
+
+ // Write x = sum(x_i * 16^i)
+ // so x*Q = sum( Q*x_i*16^i )
+ // = Q*x_0 + 16*(Q*x_1 + 16*( ... + Q*x_63) ... )
+ // <------compute inside out---------
+ //
+ // We use the lookup table to get the x_i*Q values
+ // and do four doublings to compute 16*Q
+ digits := x.signedRadix16()
+
+ // Unwrap first loop iteration to save computing 16*identity
+ multiple := &projCached{}
+ tmp1 := &projP1xP1{}
+ tmp2 := &projP2{}
+ table.SelectInto(multiple, digits[63])
+
+ v.Set(NewIdentityPoint())
+ tmp1.Add(v, multiple) // tmp1 = x_63*Q in P1xP1 coords
+ for i := 62; i >= 0; i-- {
+ tmp2.FromP1xP1(tmp1) // tmp2 = (prev) in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 2*(prev) in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 4*(prev) in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords
+ tmp2.FromP1xP1(tmp1) // tmp2 = 8*(prev) in P2 coords
+ tmp1.Double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords
+ v.fromP1xP1(tmp1) // v = 16*(prev) in P3 coords
+ table.SelectInto(multiple, digits[i])
+ tmp1.Add(v, multiple) // tmp1 = x_i*Q + 16*(prev) in P1xP1 coords
+ }
+ v.fromP1xP1(tmp1)
+ return v
+}
+
+// basepointNafTable is the nafLookupTable8 for the basepoint.
+// It is precomputed the first time it's used.
+func basepointNafTable() *nafLookupTable8 {
+ basepointNafTablePrecomp.initOnce.Do(func() {
+ basepointNafTablePrecomp.table.FromP3(NewGeneratorPoint())
+ })
+ return &basepointNafTablePrecomp.table
+}
+
+var basepointNafTablePrecomp struct {
+ table nafLookupTable8
+ initOnce sync.Once
+}
+
+// VarTimeDoubleScalarBaseMult sets v = a * A + b * B, where B is the canonical
+// generator, and returns v.
+//
+// Execution time depends on the inputs.
+func (v *Point) VarTimeDoubleScalarBaseMult(a *Scalar, A *Point, b *Scalar) *Point {
+ checkInitialized(A)
+
+ // Similarly to the single variable-base approach, we compute
+ // digits and use them with a lookup table. However, because
+ // we are allowed to do variable-time operations, we don't
+ // need constant-time lookups or constant-time digit
+ // computations.
+ //
+ // So we use a non-adjacent form of some width w instead of
+ // radix 16. This is like a binary representation (one digit
+ // for each binary place) but we allow the digits to grow in
+ // magnitude up to 2^{w-1} so that the nonzero digits are as
+ // sparse as possible. Intuitively, this "condenses" the
+ // "mass" of the scalar onto sparse coefficients (meaning
+ // fewer additions).
+
+ basepointNafTable := basepointNafTable()
+ var aTable nafLookupTable5
+ aTable.FromP3(A)
+ // Because the basepoint is fixed, we can use a wider NAF
+ // corresponding to a bigger table.
+ aNaf := a.nonAdjacentForm(5)
+ bNaf := b.nonAdjacentForm(8)
+
+ // Find the first nonzero coefficient.
+ i := 255
+ for j := i; j >= 0; j-- {
+ if aNaf[j] != 0 || bNaf[j] != 0 {
+ break
+ }
+ }
+
+ multA := &projCached{}
+ multB := &affineCached{}
+ tmp1 := &projP1xP1{}
+ tmp2 := &projP2{}
+ tmp2.Zero()
+
+ // Move from high to low bits, doubling the accumulator
+ // at each iteration and checking whether there is a nonzero
+ // coefficient to look up a multiple of.
+ for ; i >= 0; i-- {
+ tmp1.Double(tmp2)
+
+ // Only update v if we have a nonzero coeff to add in.
+ if aNaf[i] > 0 {
+ v.fromP1xP1(tmp1)
+ aTable.SelectInto(multA, aNaf[i])
+ tmp1.Add(v, multA)
+ } else if aNaf[i] < 0 {
+ v.fromP1xP1(tmp1)
+ aTable.SelectInto(multA, -aNaf[i])
+ tmp1.Sub(v, multA)
+ }
+
+ if bNaf[i] > 0 {
+ v.fromP1xP1(tmp1)
+ basepointNafTable.SelectInto(multB, bNaf[i])
+ tmp1.AddAffine(v, multB)
+ } else if bNaf[i] < 0 {
+ v.fromP1xP1(tmp1)
+ basepointNafTable.SelectInto(multB, -bNaf[i])
+ tmp1.SubAffine(v, multB)
+ }
+
+ tmp2.FromP1xP1(tmp1)
+ }
+
+ v.fromP2(tmp2)
+ return v
+}
diff --git a/vendor/filippo.io/edwards25519/tables.go b/vendor/filippo.io/edwards25519/tables.go
new file mode 100644
index 00000000..beec956b
--- /dev/null
+++ b/vendor/filippo.io/edwards25519/tables.go
@@ -0,0 +1,129 @@
+// Copyright (c) 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package edwards25519
+
+import (
+ "crypto/subtle"
+)
+
+// A dynamic lookup table for variable-base, constant-time scalar muls.
+type projLookupTable struct {
+ points [8]projCached
+}
+
+// A precomputed lookup table for fixed-base, constant-time scalar muls.
+type affineLookupTable struct {
+ points [8]affineCached
+}
+
+// A dynamic lookup table for variable-base, variable-time scalar muls.
+type nafLookupTable5 struct {
+ points [8]projCached
+}
+
+// A precomputed lookup table for fixed-base, variable-time scalar muls.
+type nafLookupTable8 struct {
+ points [64]affineCached
+}
+
+// Constructors.
+
+// Builds a lookup table at runtime. Fast.
+func (v *projLookupTable) FromP3(q *Point) {
+ // Goal: v.points[i] = (i+1)*Q, i.e., Q, 2Q, ..., 8Q
+ // This allows lookup of -8Q, ..., -Q, 0, Q, ..., 8Q
+ v.points[0].FromP3(q)
+ tmpP3 := Point{}
+ tmpP1xP1 := projP1xP1{}
+ for i := 0; i < 7; i++ {
+ // Compute (i+1)*Q as Q + i*Q and convert to a ProjCached
+ // This is needlessly complicated because the API has explicit
+ // recievers instead of creating stack objects and relying on RVO
+ v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.Add(q, &v.points[i])))
+ }
+}
+
+// This is not optimised for speed; fixed-base tables should be precomputed.
+func (v *affineLookupTable) FromP3(q *Point) {
+ // Goal: v.points[i] = (i+1)*Q, i.e., Q, 2Q, ..., 8Q
+ // This allows lookup of -8Q, ..., -Q, 0, Q, ..., 8Q
+ v.points[0].FromP3(q)
+ tmpP3 := Point{}
+ tmpP1xP1 := projP1xP1{}
+ for i := 0; i < 7; i++ {
+ // Compute (i+1)*Q as Q + i*Q and convert to AffineCached
+ v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.AddAffine(q, &v.points[i])))
+ }
+}
+
+// Builds a lookup table at runtime. Fast.
+func (v *nafLookupTable5) FromP3(q *Point) {
+ // Goal: v.points[i] = (2*i+1)*Q, i.e., Q, 3Q, 5Q, ..., 15Q
+ // This allows lookup of -15Q, ..., -3Q, -Q, 0, Q, 3Q, ..., 15Q
+ v.points[0].FromP3(q)
+ q2 := Point{}
+ q2.Add(q, q)
+ tmpP3 := Point{}
+ tmpP1xP1 := projP1xP1{}
+ for i := 0; i < 7; i++ {
+ v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.Add(&q2, &v.points[i])))
+ }
+}
+
+// This is not optimised for speed; fixed-base tables should be precomputed.
+func (v *nafLookupTable8) FromP3(q *Point) {
+ v.points[0].FromP3(q)
+ q2 := Point{}
+ q2.Add(q, q)
+ tmpP3 := Point{}
+ tmpP1xP1 := projP1xP1{}
+ for i := 0; i < 63; i++ {
+ v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.AddAffine(&q2, &v.points[i])))
+ }
+}
+
+// Selectors.
+
+// Set dest to x*Q, where -8 <= x <= 8, in constant time.
+func (v *projLookupTable) SelectInto(dest *projCached, x int8) {
+ // Compute xabs = |x|
+ xmask := x >> 7
+ xabs := uint8((x + xmask) ^ xmask)
+
+ dest.Zero()
+ for j := 1; j <= 8; j++ {
+ // Set dest = j*Q if |x| = j
+ cond := subtle.ConstantTimeByteEq(xabs, uint8(j))
+ dest.Select(&v.points[j-1], dest, cond)
+ }
+ // Now dest = |x|*Q, conditionally negate to get x*Q
+ dest.CondNeg(int(xmask & 1))
+}
+
+// Set dest to x*Q, where -8 <= x <= 8, in constant time.
+func (v *affineLookupTable) SelectInto(dest *affineCached, x int8) {
+ // Compute xabs = |x|
+ xmask := x >> 7
+ xabs := uint8((x + xmask) ^ xmask)
+
+ dest.Zero()
+ for j := 1; j <= 8; j++ {
+ // Set dest = j*Q if |x| = j
+ cond := subtle.ConstantTimeByteEq(xabs, uint8(j))
+ dest.Select(&v.points[j-1], dest, cond)
+ }
+ // Now dest = |x|*Q, conditionally negate to get x*Q
+ dest.CondNeg(int(xmask & 1))
+}
+
+// Given odd x with 0 < x < 2^4, return x*Q (in variable time).
+func (v *nafLookupTable5) SelectInto(dest *projCached, x int8) {
+ *dest = v.points[x/2]
+}
+
+// Given odd x with 0 < x < 2^7, return x*Q (in variable time).
+func (v *nafLookupTable8) SelectInto(dest *affineCached, x int8) {
+ *dest = v.points[x/2]
+}