diff options
Diffstat (limited to 'vendor/filippo.io/edwards25519/scalar.go')
-rw-r--r-- | vendor/filippo.io/edwards25519/scalar.go | 1027 |
1 files changed, 1027 insertions, 0 deletions
diff --git a/vendor/filippo.io/edwards25519/scalar.go b/vendor/filippo.io/edwards25519/scalar.go new file mode 100644 index 00000000..f3da71ce --- /dev/null +++ b/vendor/filippo.io/edwards25519/scalar.go @@ -0,0 +1,1027 @@ +// Copyright (c) 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package edwards25519 + +import ( + "crypto/subtle" + "encoding/binary" + "errors" +) + +// A Scalar is an integer modulo +// +// l = 2^252 + 27742317777372353535851937790883648493 +// +// which is the prime order of the edwards25519 group. +// +// This type works similarly to math/big.Int, and all arguments and +// receivers are allowed to alias. +// +// The zero value is a valid zero element. +type Scalar struct { + // s is the Scalar value in little-endian. The value is always reduced + // between operations. + s [32]byte +} + +var ( + scZero = Scalar{[32]byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}} + + scOne = Scalar{[32]byte{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}} + + scMinusOne = Scalar{[32]byte{236, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16}} +) + +// NewScalar returns a new zero Scalar. +func NewScalar() *Scalar { + return &Scalar{} +} + +// MultiplyAdd sets s = x * y + z mod l, and returns s. +func (s *Scalar) MultiplyAdd(x, y, z *Scalar) *Scalar { + scMulAdd(&s.s, &x.s, &y.s, &z.s) + return s +} + +// Add sets s = x + y mod l, and returns s. +func (s *Scalar) Add(x, y *Scalar) *Scalar { + // s = 1 * x + y mod l + scMulAdd(&s.s, &scOne.s, &x.s, &y.s) + return s +} + +// Subtract sets s = x - y mod l, and returns s. +func (s *Scalar) Subtract(x, y *Scalar) *Scalar { + // s = -1 * y + x mod l + scMulAdd(&s.s, &scMinusOne.s, &y.s, &x.s) + return s +} + +// Negate sets s = -x mod l, and returns s. +func (s *Scalar) Negate(x *Scalar) *Scalar { + // s = -1 * x + 0 mod l + scMulAdd(&s.s, &scMinusOne.s, &x.s, &scZero.s) + return s +} + +// Multiply sets s = x * y mod l, and returns s. +func (s *Scalar) Multiply(x, y *Scalar) *Scalar { + // s = x * y + 0 mod l + scMulAdd(&s.s, &x.s, &y.s, &scZero.s) + return s +} + +// Set sets s = x, and returns s. +func (s *Scalar) Set(x *Scalar) *Scalar { + *s = *x + return s +} + +// SetUniformBytes sets s to an uniformly distributed value given 64 uniformly +// distributed random bytes. If x is not of the right length, SetUniformBytes +// returns nil and an error, and the receiver is unchanged. +func (s *Scalar) SetUniformBytes(x []byte) (*Scalar, error) { + if len(x) != 64 { + return nil, errors.New("edwards25519: invalid SetUniformBytes input length") + } + var wideBytes [64]byte + copy(wideBytes[:], x[:]) + scReduce(&s.s, &wideBytes) + return s, nil +} + +// SetCanonicalBytes sets s = x, where x is a 32-byte little-endian encoding of +// s, and returns s. If x is not a canonical encoding of s, SetCanonicalBytes +// returns nil and an error, and the receiver is unchanged. +func (s *Scalar) SetCanonicalBytes(x []byte) (*Scalar, error) { + if len(x) != 32 { + return nil, errors.New("invalid scalar length") + } + ss := &Scalar{} + copy(ss.s[:], x) + if !isReduced(ss) { + return nil, errors.New("invalid scalar encoding") + } + s.s = ss.s + return s, nil +} + +// isReduced returns whether the given scalar is reduced modulo l. +func isReduced(s *Scalar) bool { + for i := len(s.s) - 1; i >= 0; i-- { + switch { + case s.s[i] > scMinusOne.s[i]: + return false + case s.s[i] < scMinusOne.s[i]: + return true + } + } + return true +} + +// SetBytesWithClamping applies the buffer pruning described in RFC 8032, +// Section 5.1.5 (also known as clamping) and sets s to the result. The input +// must be 32 bytes, and it is not modified. If x is not of the right length, +// SetBytesWithClamping returns nil and an error, and the receiver is unchanged. +// +// Note that since Scalar values are always reduced modulo the prime order of +// the curve, the resulting value will not preserve any of the cofactor-clearing +// properties that clamping is meant to provide. It will however work as +// expected as long as it is applied to points on the prime order subgroup, like +// in Ed25519. In fact, it is lost to history why RFC 8032 adopted the +// irrelevant RFC 7748 clamping, but it is now required for compatibility. +func (s *Scalar) SetBytesWithClamping(x []byte) (*Scalar, error) { + // The description above omits the purpose of the high bits of the clamping + // for brevity, but those are also lost to reductions, and are also + // irrelevant to edwards25519 as they protect against a specific + // implementation bug that was once observed in a generic Montgomery ladder. + if len(x) != 32 { + return nil, errors.New("edwards25519: invalid SetBytesWithClamping input length") + } + var wideBytes [64]byte + copy(wideBytes[:], x[:]) + wideBytes[0] &= 248 + wideBytes[31] &= 63 + wideBytes[31] |= 64 + scReduce(&s.s, &wideBytes) + return s, nil +} + +// Bytes returns the canonical 32-byte little-endian encoding of s. +func (s *Scalar) Bytes() []byte { + buf := make([]byte, 32) + copy(buf, s.s[:]) + return buf +} + +// Equal returns 1 if s and t are equal, and 0 otherwise. +func (s *Scalar) Equal(t *Scalar) int { + return subtle.ConstantTimeCompare(s.s[:], t.s[:]) +} + +// scMulAdd and scReduce are ported from the public domain, “ref10” +// implementation of ed25519 from SUPERCOP. + +func load3(in []byte) int64 { + r := int64(in[0]) + r |= int64(in[1]) << 8 + r |= int64(in[2]) << 16 + return r +} + +func load4(in []byte) int64 { + r := int64(in[0]) + r |= int64(in[1]) << 8 + r |= int64(in[2]) << 16 + r |= int64(in[3]) << 24 + return r +} + +// Input: +// a[0]+256*a[1]+...+256^31*a[31] = a +// b[0]+256*b[1]+...+256^31*b[31] = b +// c[0]+256*c[1]+...+256^31*c[31] = c +// +// Output: +// s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l +// where l = 2^252 + 27742317777372353535851937790883648493. +func scMulAdd(s, a, b, c *[32]byte) { + a0 := 2097151 & load3(a[:]) + a1 := 2097151 & (load4(a[2:]) >> 5) + a2 := 2097151 & (load3(a[5:]) >> 2) + a3 := 2097151 & (load4(a[7:]) >> 7) + a4 := 2097151 & (load4(a[10:]) >> 4) + a5 := 2097151 & (load3(a[13:]) >> 1) + a6 := 2097151 & (load4(a[15:]) >> 6) + a7 := 2097151 & (load3(a[18:]) >> 3) + a8 := 2097151 & load3(a[21:]) + a9 := 2097151 & (load4(a[23:]) >> 5) + a10 := 2097151 & (load3(a[26:]) >> 2) + a11 := (load4(a[28:]) >> 7) + b0 := 2097151 & load3(b[:]) + b1 := 2097151 & (load4(b[2:]) >> 5) + b2 := 2097151 & (load3(b[5:]) >> 2) + b3 := 2097151 & (load4(b[7:]) >> 7) + b4 := 2097151 & (load4(b[10:]) >> 4) + b5 := 2097151 & (load3(b[13:]) >> 1) + b6 := 2097151 & (load4(b[15:]) >> 6) + b7 := 2097151 & (load3(b[18:]) >> 3) + b8 := 2097151 & load3(b[21:]) + b9 := 2097151 & (load4(b[23:]) >> 5) + b10 := 2097151 & (load3(b[26:]) >> 2) + b11 := (load4(b[28:]) >> 7) + c0 := 2097151 & load3(c[:]) + c1 := 2097151 & (load4(c[2:]) >> 5) + c2 := 2097151 & (load3(c[5:]) >> 2) + c3 := 2097151 & (load4(c[7:]) >> 7) + c4 := 2097151 & (load4(c[10:]) >> 4) + c5 := 2097151 & (load3(c[13:]) >> 1) + c6 := 2097151 & (load4(c[15:]) >> 6) + c7 := 2097151 & (load3(c[18:]) >> 3) + c8 := 2097151 & load3(c[21:]) + c9 := 2097151 & (load4(c[23:]) >> 5) + c10 := 2097151 & (load3(c[26:]) >> 2) + c11 := (load4(c[28:]) >> 7) + var carry [23]int64 + + s0 := c0 + a0*b0 + s1 := c1 + a0*b1 + a1*b0 + s2 := c2 + a0*b2 + a1*b1 + a2*b0 + s3 := c3 + a0*b3 + a1*b2 + a2*b1 + a3*b0 + s4 := c4 + a0*b4 + a1*b3 + a2*b2 + a3*b1 + a4*b0 + s5 := c5 + a0*b5 + a1*b4 + a2*b3 + a3*b2 + a4*b1 + a5*b0 + s6 := c6 + a0*b6 + a1*b5 + a2*b4 + a3*b3 + a4*b2 + a5*b1 + a6*b0 + s7 := c7 + a0*b7 + a1*b6 + a2*b5 + a3*b4 + a4*b3 + a5*b2 + a6*b1 + a7*b0 + s8 := c8 + a0*b8 + a1*b7 + a2*b6 + a3*b5 + a4*b4 + a5*b3 + a6*b2 + a7*b1 + a8*b0 + s9 := c9 + a0*b9 + a1*b8 + a2*b7 + a3*b6 + a4*b5 + a5*b4 + a6*b3 + a7*b2 + a8*b1 + a9*b0 + s10 := c10 + a0*b10 + a1*b9 + a2*b8 + a3*b7 + a4*b6 + a5*b5 + a6*b4 + a7*b3 + a8*b2 + a9*b1 + a10*b0 + s11 := c11 + a0*b11 + a1*b10 + a2*b9 + a3*b8 + a4*b7 + a5*b6 + a6*b5 + a7*b4 + a8*b3 + a9*b2 + a10*b1 + a11*b0 + s12 := a1*b11 + a2*b10 + a3*b9 + a4*b8 + a5*b7 + a6*b6 + a7*b5 + a8*b4 + a9*b3 + a10*b2 + a11*b1 + s13 := a2*b11 + a3*b10 + a4*b9 + a5*b8 + a6*b7 + a7*b6 + a8*b5 + a9*b4 + a10*b3 + a11*b2 + s14 := a3*b11 + a4*b10 + a5*b9 + a6*b8 + a7*b7 + a8*b6 + a9*b5 + a10*b4 + a11*b3 + s15 := a4*b11 + a5*b10 + a6*b9 + a7*b8 + a8*b7 + a9*b6 + a10*b5 + a11*b4 + s16 := a5*b11 + a6*b10 + a7*b9 + a8*b8 + a9*b7 + a10*b6 + a11*b5 + s17 := a6*b11 + a7*b10 + a8*b9 + a9*b8 + a10*b7 + a11*b6 + s18 := a7*b11 + a8*b10 + a9*b9 + a10*b8 + a11*b7 + s19 := a8*b11 + a9*b10 + a10*b9 + a11*b8 + s20 := a9*b11 + a10*b10 + a11*b9 + s21 := a10*b11 + a11*b10 + s22 := a11 * b11 + s23 := int64(0) + + carry[0] = (s0 + (1 << 20)) >> 21 + s1 += carry[0] + s0 -= carry[0] << 21 + carry[2] = (s2 + (1 << 20)) >> 21 + s3 += carry[2] + s2 -= carry[2] << 21 + carry[4] = (s4 + (1 << 20)) >> 21 + s5 += carry[4] + s4 -= carry[4] << 21 + carry[6] = (s6 + (1 << 20)) >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[8] = (s8 + (1 << 20)) >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[10] = (s10 + (1 << 20)) >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + carry[12] = (s12 + (1 << 20)) >> 21 + s13 += carry[12] + s12 -= carry[12] << 21 + carry[14] = (s14 + (1 << 20)) >> 21 + s15 += carry[14] + s14 -= carry[14] << 21 + carry[16] = (s16 + (1 << 20)) >> 21 + s17 += carry[16] + s16 -= carry[16] << 21 + carry[18] = (s18 + (1 << 20)) >> 21 + s19 += carry[18] + s18 -= carry[18] << 21 + carry[20] = (s20 + (1 << 20)) >> 21 + s21 += carry[20] + s20 -= carry[20] << 21 + carry[22] = (s22 + (1 << 20)) >> 21 + s23 += carry[22] + s22 -= carry[22] << 21 + + carry[1] = (s1 + (1 << 20)) >> 21 + s2 += carry[1] + s1 -= carry[1] << 21 + carry[3] = (s3 + (1 << 20)) >> 21 + s4 += carry[3] + s3 -= carry[3] << 21 + carry[5] = (s5 + (1 << 20)) >> 21 + s6 += carry[5] + s5 -= carry[5] << 21 + carry[7] = (s7 + (1 << 20)) >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[9] = (s9 + (1 << 20)) >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[11] = (s11 + (1 << 20)) >> 21 + s12 += carry[11] + s11 -= carry[11] << 21 + carry[13] = (s13 + (1 << 20)) >> 21 + s14 += carry[13] + s13 -= carry[13] << 21 + carry[15] = (s15 + (1 << 20)) >> 21 + s16 += carry[15] + s15 -= carry[15] << 21 + carry[17] = (s17 + (1 << 20)) >> 21 + s18 += carry[17] + s17 -= carry[17] << 21 + carry[19] = (s19 + (1 << 20)) >> 21 + s20 += carry[19] + s19 -= carry[19] << 21 + carry[21] = (s21 + (1 << 20)) >> 21 + s22 += carry[21] + s21 -= carry[21] << 21 + + s11 += s23 * 666643 + s12 += s23 * 470296 + s13 += s23 * 654183 + s14 -= s23 * 997805 + s15 += s23 * 136657 + s16 -= s23 * 683901 + s23 = 0 + + s10 += s22 * 666643 + s11 += s22 * 470296 + s12 += s22 * 654183 + s13 -= s22 * 997805 + s14 += s22 * 136657 + s15 -= s22 * 683901 + s22 = 0 + + s9 += s21 * 666643 + s10 += s21 * 470296 + s11 += s21 * 654183 + s12 -= s21 * 997805 + s13 += s21 * 136657 + s14 -= s21 * 683901 + s21 = 0 + + s8 += s20 * 666643 + s9 += s20 * 470296 + s10 += s20 * 654183 + s11 -= s20 * 997805 + s12 += s20 * 136657 + s13 -= s20 * 683901 + s20 = 0 + + s7 += s19 * 666643 + s8 += s19 * 470296 + s9 += s19 * 654183 + s10 -= s19 * 997805 + s11 += s19 * 136657 + s12 -= s19 * 683901 + s19 = 0 + + s6 += s18 * 666643 + s7 += s18 * 470296 + s8 += s18 * 654183 + s9 -= s18 * 997805 + s10 += s18 * 136657 + s11 -= s18 * 683901 + s18 = 0 + + carry[6] = (s6 + (1 << 20)) >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[8] = (s8 + (1 << 20)) >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[10] = (s10 + (1 << 20)) >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + carry[12] = (s12 + (1 << 20)) >> 21 + s13 += carry[12] + s12 -= carry[12] << 21 + carry[14] = (s14 + (1 << 20)) >> 21 + s15 += carry[14] + s14 -= carry[14] << 21 + carry[16] = (s16 + (1 << 20)) >> 21 + s17 += carry[16] + s16 -= carry[16] << 21 + + carry[7] = (s7 + (1 << 20)) >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[9] = (s9 + (1 << 20)) >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[11] = (s11 + (1 << 20)) >> 21 + s12 += carry[11] + s11 -= carry[11] << 21 + carry[13] = (s13 + (1 << 20)) >> 21 + s14 += carry[13] + s13 -= carry[13] << 21 + carry[15] = (s15 + (1 << 20)) >> 21 + s16 += carry[15] + s15 -= carry[15] << 21 + + s5 += s17 * 666643 + s6 += s17 * 470296 + s7 += s17 * 654183 + s8 -= s17 * 997805 + s9 += s17 * 136657 + s10 -= s17 * 683901 + s17 = 0 + + s4 += s16 * 666643 + s5 += s16 * 470296 + s6 += s16 * 654183 + s7 -= s16 * 997805 + s8 += s16 * 136657 + s9 -= s16 * 683901 + s16 = 0 + + s3 += s15 * 666643 + s4 += s15 * 470296 + s5 += s15 * 654183 + s6 -= s15 * 997805 + s7 += s15 * 136657 + s8 -= s15 * 683901 + s15 = 0 + + s2 += s14 * 666643 + s3 += s14 * 470296 + s4 += s14 * 654183 + s5 -= s14 * 997805 + s6 += s14 * 136657 + s7 -= s14 * 683901 + s14 = 0 + + s1 += s13 * 666643 + s2 += s13 * 470296 + s3 += s13 * 654183 + s4 -= s13 * 997805 + s5 += s13 * 136657 + s6 -= s13 * 683901 + s13 = 0 + + s0 += s12 * 666643 + s1 += s12 * 470296 + s2 += s12 * 654183 + s3 -= s12 * 997805 + s4 += s12 * 136657 + s5 -= s12 * 683901 + s12 = 0 + + carry[0] = (s0 + (1 << 20)) >> 21 + s1 += carry[0] + s0 -= carry[0] << 21 + carry[2] = (s2 + (1 << 20)) >> 21 + s3 += carry[2] + s2 -= carry[2] << 21 + carry[4] = (s4 + (1 << 20)) >> 21 + s5 += carry[4] + s4 -= carry[4] << 21 + carry[6] = (s6 + (1 << 20)) >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[8] = (s8 + (1 << 20)) >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[10] = (s10 + (1 << 20)) >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + + carry[1] = (s1 + (1 << 20)) >> 21 + s2 += carry[1] + s1 -= carry[1] << 21 + carry[3] = (s3 + (1 << 20)) >> 21 + s4 += carry[3] + s3 -= carry[3] << 21 + carry[5] = (s5 + (1 << 20)) >> 21 + s6 += carry[5] + s5 -= carry[5] << 21 + carry[7] = (s7 + (1 << 20)) >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[9] = (s9 + (1 << 20)) >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[11] = (s11 + (1 << 20)) >> 21 + s12 += carry[11] + s11 -= carry[11] << 21 + + s0 += s12 * 666643 + s1 += s12 * 470296 + s2 += s12 * 654183 + s3 -= s12 * 997805 + s4 += s12 * 136657 + s5 -= s12 * 683901 + s12 = 0 + + carry[0] = s0 >> 21 + s1 += carry[0] + s0 -= carry[0] << 21 + carry[1] = s1 >> 21 + s2 += carry[1] + s1 -= carry[1] << 21 + carry[2] = s2 >> 21 + s3 += carry[2] + s2 -= carry[2] << 21 + carry[3] = s3 >> 21 + s4 += carry[3] + s3 -= carry[3] << 21 + carry[4] = s4 >> 21 + s5 += carry[4] + s4 -= carry[4] << 21 + carry[5] = s5 >> 21 + s6 += carry[5] + s5 -= carry[5] << 21 + carry[6] = s6 >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[7] = s7 >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[8] = s8 >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[9] = s9 >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[10] = s10 >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + carry[11] = s11 >> 21 + s12 += carry[11] + s11 -= carry[11] << 21 + + s0 += s12 * 666643 + s1 += s12 * 470296 + s2 += s12 * 654183 + s3 -= s12 * 997805 + s4 += s12 * 136657 + s5 -= s12 * 683901 + s12 = 0 + + carry[0] = s0 >> 21 + s1 += carry[0] + s0 -= carry[0] << 21 + carry[1] = s1 >> 21 + s2 += carry[1] + s1 -= carry[1] << 21 + carry[2] = s2 >> 21 + s3 += carry[2] + s2 -= carry[2] << 21 + carry[3] = s3 >> 21 + s4 += carry[3] + s3 -= carry[3] << 21 + carry[4] = s4 >> 21 + s5 += carry[4] + s4 -= carry[4] << 21 + carry[5] = s5 >> 21 + s6 += carry[5] + s5 -= carry[5] << 21 + carry[6] = s6 >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[7] = s7 >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[8] = s8 >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[9] = s9 >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[10] = s10 >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + + s[0] = byte(s0 >> 0) + s[1] = byte(s0 >> 8) + s[2] = byte((s0 >> 16) | (s1 << 5)) + s[3] = byte(s1 >> 3) + s[4] = byte(s1 >> 11) + s[5] = byte((s1 >> 19) | (s2 << 2)) + s[6] = byte(s2 >> 6) + s[7] = byte((s2 >> 14) | (s3 << 7)) + s[8] = byte(s3 >> 1) + s[9] = byte(s3 >> 9) + s[10] = byte((s3 >> 17) | (s4 << 4)) + s[11] = byte(s4 >> 4) + s[12] = byte(s4 >> 12) + s[13] = byte((s4 >> 20) | (s5 << 1)) + s[14] = byte(s5 >> 7) + s[15] = byte((s5 >> 15) | (s6 << 6)) + s[16] = byte(s6 >> 2) + s[17] = byte(s6 >> 10) + s[18] = byte((s6 >> 18) | (s7 << 3)) + s[19] = byte(s7 >> 5) + s[20] = byte(s7 >> 13) + s[21] = byte(s8 >> 0) + s[22] = byte(s8 >> 8) + s[23] = byte((s8 >> 16) | (s9 << 5)) + s[24] = byte(s9 >> 3) + s[25] = byte(s9 >> 11) + s[26] = byte((s9 >> 19) | (s10 << 2)) + s[27] = byte(s10 >> 6) + s[28] = byte((s10 >> 14) | (s11 << 7)) + s[29] = byte(s11 >> 1) + s[30] = byte(s11 >> 9) + s[31] = byte(s11 >> 17) +} + +// Input: +// s[0]+256*s[1]+...+256^63*s[63] = s +// +// Output: +// s[0]+256*s[1]+...+256^31*s[31] = s mod l +// where l = 2^252 + 27742317777372353535851937790883648493. +func scReduce(out *[32]byte, s *[64]byte) { + s0 := 2097151 & load3(s[:]) + s1 := 2097151 & (load4(s[2:]) >> 5) + s2 := 2097151 & (load3(s[5:]) >> 2) + s3 := 2097151 & (load4(s[7:]) >> 7) + s4 := 2097151 & (load4(s[10:]) >> 4) + s5 := 2097151 & (load3(s[13:]) >> 1) + s6 := 2097151 & (load4(s[15:]) >> 6) + s7 := 2097151 & (load3(s[18:]) >> 3) + s8 := 2097151 & load3(s[21:]) + s9 := 2097151 & (load4(s[23:]) >> 5) + s10 := 2097151 & (load3(s[26:]) >> 2) + s11 := 2097151 & (load4(s[28:]) >> 7) + s12 := 2097151 & (load4(s[31:]) >> 4) + s13 := 2097151 & (load3(s[34:]) >> 1) + s14 := 2097151 & (load4(s[36:]) >> 6) + s15 := 2097151 & (load3(s[39:]) >> 3) + s16 := 2097151 & load3(s[42:]) + s17 := 2097151 & (load4(s[44:]) >> 5) + s18 := 2097151 & (load3(s[47:]) >> 2) + s19 := 2097151 & (load4(s[49:]) >> 7) + s20 := 2097151 & (load4(s[52:]) >> 4) + s21 := 2097151 & (load3(s[55:]) >> 1) + s22 := 2097151 & (load4(s[57:]) >> 6) + s23 := (load4(s[60:]) >> 3) + + s11 += s23 * 666643 + s12 += s23 * 470296 + s13 += s23 * 654183 + s14 -= s23 * 997805 + s15 += s23 * 136657 + s16 -= s23 * 683901 + s23 = 0 + + s10 += s22 * 666643 + s11 += s22 * 470296 + s12 += s22 * 654183 + s13 -= s22 * 997805 + s14 += s22 * 136657 + s15 -= s22 * 683901 + s22 = 0 + + s9 += s21 * 666643 + s10 += s21 * 470296 + s11 += s21 * 654183 + s12 -= s21 * 997805 + s13 += s21 * 136657 + s14 -= s21 * 683901 + s21 = 0 + + s8 += s20 * 666643 + s9 += s20 * 470296 + s10 += s20 * 654183 + s11 -= s20 * 997805 + s12 += s20 * 136657 + s13 -= s20 * 683901 + s20 = 0 + + s7 += s19 * 666643 + s8 += s19 * 470296 + s9 += s19 * 654183 + s10 -= s19 * 997805 + s11 += s19 * 136657 + s12 -= s19 * 683901 + s19 = 0 + + s6 += s18 * 666643 + s7 += s18 * 470296 + s8 += s18 * 654183 + s9 -= s18 * 997805 + s10 += s18 * 136657 + s11 -= s18 * 683901 + s18 = 0 + + var carry [17]int64 + + carry[6] = (s6 + (1 << 20)) >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[8] = (s8 + (1 << 20)) >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[10] = (s10 + (1 << 20)) >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + carry[12] = (s12 + (1 << 20)) >> 21 + s13 += carry[12] + s12 -= carry[12] << 21 + carry[14] = (s14 + (1 << 20)) >> 21 + s15 += carry[14] + s14 -= carry[14] << 21 + carry[16] = (s16 + (1 << 20)) >> 21 + s17 += carry[16] + s16 -= carry[16] << 21 + + carry[7] = (s7 + (1 << 20)) >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[9] = (s9 + (1 << 20)) >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[11] = (s11 + (1 << 20)) >> 21 + s12 += carry[11] + s11 -= carry[11] << 21 + carry[13] = (s13 + (1 << 20)) >> 21 + s14 += carry[13] + s13 -= carry[13] << 21 + carry[15] = (s15 + (1 << 20)) >> 21 + s16 += carry[15] + s15 -= carry[15] << 21 + + s5 += s17 * 666643 + s6 += s17 * 470296 + s7 += s17 * 654183 + s8 -= s17 * 997805 + s9 += s17 * 136657 + s10 -= s17 * 683901 + s17 = 0 + + s4 += s16 * 666643 + s5 += s16 * 470296 + s6 += s16 * 654183 + s7 -= s16 * 997805 + s8 += s16 * 136657 + s9 -= s16 * 683901 + s16 = 0 + + s3 += s15 * 666643 + s4 += s15 * 470296 + s5 += s15 * 654183 + s6 -= s15 * 997805 + s7 += s15 * 136657 + s8 -= s15 * 683901 + s15 = 0 + + s2 += s14 * 666643 + s3 += s14 * 470296 + s4 += s14 * 654183 + s5 -= s14 * 997805 + s6 += s14 * 136657 + s7 -= s14 * 683901 + s14 = 0 + + s1 += s13 * 666643 + s2 += s13 * 470296 + s3 += s13 * 654183 + s4 -= s13 * 997805 + s5 += s13 * 136657 + s6 -= s13 * 683901 + s13 = 0 + + s0 += s12 * 666643 + s1 += s12 * 470296 + s2 += s12 * 654183 + s3 -= s12 * 997805 + s4 += s12 * 136657 + s5 -= s12 * 683901 + s12 = 0 + + carry[0] = (s0 + (1 << 20)) >> 21 + s1 += carry[0] + s0 -= carry[0] << 21 + carry[2] = (s2 + (1 << 20)) >> 21 + s3 += carry[2] + s2 -= carry[2] << 21 + carry[4] = (s4 + (1 << 20)) >> 21 + s5 += carry[4] + s4 -= carry[4] << 21 + carry[6] = (s6 + (1 << 20)) >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[8] = (s8 + (1 << 20)) >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[10] = (s10 + (1 << 20)) >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + + carry[1] = (s1 + (1 << 20)) >> 21 + s2 += carry[1] + s1 -= carry[1] << 21 + carry[3] = (s3 + (1 << 20)) >> 21 + s4 += carry[3] + s3 -= carry[3] << 21 + carry[5] = (s5 + (1 << 20)) >> 21 + s6 += carry[5] + s5 -= carry[5] << 21 + carry[7] = (s7 + (1 << 20)) >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[9] = (s9 + (1 << 20)) >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[11] = (s11 + (1 << 20)) >> 21 + s12 += carry[11] + s11 -= carry[11] << 21 + + s0 += s12 * 666643 + s1 += s12 * 470296 + s2 += s12 * 654183 + s3 -= s12 * 997805 + s4 += s12 * 136657 + s5 -= s12 * 683901 + s12 = 0 + + carry[0] = s0 >> 21 + s1 += carry[0] + s0 -= carry[0] << 21 + carry[1] = s1 >> 21 + s2 += carry[1] + s1 -= carry[1] << 21 + carry[2] = s2 >> 21 + s3 += carry[2] + s2 -= carry[2] << 21 + carry[3] = s3 >> 21 + s4 += carry[3] + s3 -= carry[3] << 21 + carry[4] = s4 >> 21 + s5 += carry[4] + s4 -= carry[4] << 21 + carry[5] = s5 >> 21 + s6 += carry[5] + s5 -= carry[5] << 21 + carry[6] = s6 >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[7] = s7 >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[8] = s8 >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[9] = s9 >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[10] = s10 >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + carry[11] = s11 >> 21 + s12 += carry[11] + s11 -= carry[11] << 21 + + s0 += s12 * 666643 + s1 += s12 * 470296 + s2 += s12 * 654183 + s3 -= s12 * 997805 + s4 += s12 * 136657 + s5 -= s12 * 683901 + s12 = 0 + + carry[0] = s0 >> 21 + s1 += carry[0] + s0 -= carry[0] << 21 + carry[1] = s1 >> 21 + s2 += carry[1] + s1 -= carry[1] << 21 + carry[2] = s2 >> 21 + s3 += carry[2] + s2 -= carry[2] << 21 + carry[3] = s3 >> 21 + s4 += carry[3] + s3 -= carry[3] << 21 + carry[4] = s4 >> 21 + s5 += carry[4] + s4 -= carry[4] << 21 + carry[5] = s5 >> 21 + s6 += carry[5] + s5 -= carry[5] << 21 + carry[6] = s6 >> 21 + s7 += carry[6] + s6 -= carry[6] << 21 + carry[7] = s7 >> 21 + s8 += carry[7] + s7 -= carry[7] << 21 + carry[8] = s8 >> 21 + s9 += carry[8] + s8 -= carry[8] << 21 + carry[9] = s9 >> 21 + s10 += carry[9] + s9 -= carry[9] << 21 + carry[10] = s10 >> 21 + s11 += carry[10] + s10 -= carry[10] << 21 + + out[0] = byte(s0 >> 0) + out[1] = byte(s0 >> 8) + out[2] = byte((s0 >> 16) | (s1 << 5)) + out[3] = byte(s1 >> 3) + out[4] = byte(s1 >> 11) + out[5] = byte((s1 >> 19) | (s2 << 2)) + out[6] = byte(s2 >> 6) + out[7] = byte((s2 >> 14) | (s3 << 7)) + out[8] = byte(s3 >> 1) + out[9] = byte(s3 >> 9) + out[10] = byte((s3 >> 17) | (s4 << 4)) + out[11] = byte(s4 >> 4) + out[12] = byte(s4 >> 12) + out[13] = byte((s4 >> 20) | (s5 << 1)) + out[14] = byte(s5 >> 7) + out[15] = byte((s5 >> 15) | (s6 << 6)) + out[16] = byte(s6 >> 2) + out[17] = byte(s6 >> 10) + out[18] = byte((s6 >> 18) | (s7 << 3)) + out[19] = byte(s7 >> 5) + out[20] = byte(s7 >> 13) + out[21] = byte(s8 >> 0) + out[22] = byte(s8 >> 8) + out[23] = byte((s8 >> 16) | (s9 << 5)) + out[24] = byte(s9 >> 3) + out[25] = byte(s9 >> 11) + out[26] = byte((s9 >> 19) | (s10 << 2)) + out[27] = byte(s10 >> 6) + out[28] = byte((s10 >> 14) | (s11 << 7)) + out[29] = byte(s11 >> 1) + out[30] = byte(s11 >> 9) + out[31] = byte(s11 >> 17) +} + +// nonAdjacentForm computes a width-w non-adjacent form for this scalar. +// +// w must be between 2 and 8, or nonAdjacentForm will panic. +func (s *Scalar) nonAdjacentForm(w uint) [256]int8 { + // This implementation is adapted from the one + // in curve25519-dalek and is documented there: + // https://github.com/dalek-cryptography/curve25519-dalek/blob/f630041af28e9a405255f98a8a93adca18e4315b/src/scalar.rs#L800-L871 + if s.s[31] > 127 { + panic("scalar has high bit set illegally") + } + if w < 2 { + panic("w must be at least 2 by the definition of NAF") + } else if w > 8 { + panic("NAF digits must fit in int8") + } + + var naf [256]int8 + var digits [5]uint64 + + for i := 0; i < 4; i++ { + digits[i] = binary.LittleEndian.Uint64(s.s[i*8:]) + } + + width := uint64(1 << w) + windowMask := uint64(width - 1) + + pos := uint(0) + carry := uint64(0) + for pos < 256 { + indexU64 := pos / 64 + indexBit := pos % 64 + var bitBuf uint64 + if indexBit < 64-w { + // This window's bits are contained in a single u64 + bitBuf = digits[indexU64] >> indexBit + } else { + // Combine the current 64 bits with bits from the next 64 + bitBuf = (digits[indexU64] >> indexBit) | (digits[1+indexU64] << (64 - indexBit)) + } + + // Add carry into the current window + window := carry + (bitBuf & windowMask) + + if window&1 == 0 { + // If the window value is even, preserve the carry and continue. + // Why is the carry preserved? + // If carry == 0 and window & 1 == 0, + // then the next carry should be 0 + // If carry == 1 and window & 1 == 0, + // then bit_buf & 1 == 1 so the next carry should be 1 + pos += 1 + continue + } + + if window < width/2 { + carry = 0 + naf[pos] = int8(window) + } else { + carry = 1 + naf[pos] = int8(window) - int8(width) + } + + pos += w + } + return naf +} + +func (s *Scalar) signedRadix16() [64]int8 { + if s.s[31] > 127 { + panic("scalar has high bit set illegally") + } + + var digits [64]int8 + + // Compute unsigned radix-16 digits: + for i := 0; i < 32; i++ { + digits[2*i] = int8(s.s[i] & 15) + digits[2*i+1] = int8((s.s[i] >> 4) & 15) + } + + // Recenter coefficients: + for i := 0; i < 63; i++ { + carry := (digits[i] + 8) >> 4 + digits[i] -= carry << 4 + digits[i+1] += carry + } + + return digits +} |