summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/image
diff options
context:
space:
mode:
authorWim <wim@42.be>2020-12-31 14:48:12 +0100
committerGitHub <noreply@github.com>2020-12-31 14:48:12 +0100
commit4f20ebead36876a88391bf033d1de3e4cf0228da (patch)
tree70b6fd79c6a5e00c958c29a7bd3926f074e76ba6 /vendor/golang.org/x/image
parenta9f89dbc645aafc68daa9fc8d589f55104b535c7 (diff)
downloadmatterbridge-msglm-4f20ebead36876a88391bf033d1de3e4cf0228da.tar.gz
matterbridge-msglm-4f20ebead36876a88391bf033d1de3e4cf0228da.tar.bz2
matterbridge-msglm-4f20ebead36876a88391bf033d1de3e4cf0228da.zip
Update vendor for next release (#1343)
Diffstat (limited to 'vendor/golang.org/x/image')
-rw-r--r--vendor/golang.org/x/image/bmp/reader.go219
-rw-r--r--vendor/golang.org/x/image/bmp/writer.go262
-rw-r--r--vendor/golang.org/x/image/ccitt/reader.go795
-rw-r--r--vendor/golang.org/x/image/ccitt/table.go972
-rw-r--r--vendor/golang.org/x/image/ccitt/writer.go102
-rw-r--r--vendor/golang.org/x/image/tiff/buffer.go69
-rw-r--r--vendor/golang.org/x/image/tiff/compress.go58
-rw-r--r--vendor/golang.org/x/image/tiff/consts.go149
-rw-r--r--vendor/golang.org/x/image/tiff/fuzz.go29
-rw-r--r--vendor/golang.org/x/image/tiff/lzw/reader.go272
-rw-r--r--vendor/golang.org/x/image/tiff/reader.go709
-rw-r--r--vendor/golang.org/x/image/tiff/writer.go438
12 files changed, 4074 insertions, 0 deletions
diff --git a/vendor/golang.org/x/image/bmp/reader.go b/vendor/golang.org/x/image/bmp/reader.go
new file mode 100644
index 00000000..52e25205
--- /dev/null
+++ b/vendor/golang.org/x/image/bmp/reader.go
@@ -0,0 +1,219 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package bmp implements a BMP image decoder and encoder.
+//
+// The BMP specification is at http://www.digicamsoft.com/bmp/bmp.html.
+package bmp // import "golang.org/x/image/bmp"
+
+import (
+ "errors"
+ "image"
+ "image/color"
+ "io"
+)
+
+// ErrUnsupported means that the input BMP image uses a valid but unsupported
+// feature.
+var ErrUnsupported = errors.New("bmp: unsupported BMP image")
+
+func readUint16(b []byte) uint16 {
+ return uint16(b[0]) | uint16(b[1])<<8
+}
+
+func readUint32(b []byte) uint32 {
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+// decodePaletted reads an 8 bit-per-pixel BMP image from r.
+// If topDown is false, the image rows will be read bottom-up.
+func decodePaletted(r io.Reader, c image.Config, topDown bool) (image.Image, error) {
+ paletted := image.NewPaletted(image.Rect(0, 0, c.Width, c.Height), c.ColorModel.(color.Palette))
+ if c.Width == 0 || c.Height == 0 {
+ return paletted, nil
+ }
+ var tmp [4]byte
+ y0, y1, yDelta := c.Height-1, -1, -1
+ if topDown {
+ y0, y1, yDelta = 0, c.Height, +1
+ }
+ for y := y0; y != y1; y += yDelta {
+ p := paletted.Pix[y*paletted.Stride : y*paletted.Stride+c.Width]
+ if _, err := io.ReadFull(r, p); err != nil {
+ return nil, err
+ }
+ // Each row is 4-byte aligned.
+ if c.Width%4 != 0 {
+ _, err := io.ReadFull(r, tmp[:4-c.Width%4])
+ if err != nil {
+ return nil, err
+ }
+ }
+ }
+ return paletted, nil
+}
+
+// decodeRGB reads a 24 bit-per-pixel BMP image from r.
+// If topDown is false, the image rows will be read bottom-up.
+func decodeRGB(r io.Reader, c image.Config, topDown bool) (image.Image, error) {
+ rgba := image.NewRGBA(image.Rect(0, 0, c.Width, c.Height))
+ if c.Width == 0 || c.Height == 0 {
+ return rgba, nil
+ }
+ // There are 3 bytes per pixel, and each row is 4-byte aligned.
+ b := make([]byte, (3*c.Width+3)&^3)
+ y0, y1, yDelta := c.Height-1, -1, -1
+ if topDown {
+ y0, y1, yDelta = 0, c.Height, +1
+ }
+ for y := y0; y != y1; y += yDelta {
+ if _, err := io.ReadFull(r, b); err != nil {
+ return nil, err
+ }
+ p := rgba.Pix[y*rgba.Stride : y*rgba.Stride+c.Width*4]
+ for i, j := 0, 0; i < len(p); i, j = i+4, j+3 {
+ // BMP images are stored in BGR order rather than RGB order.
+ p[i+0] = b[j+2]
+ p[i+1] = b[j+1]
+ p[i+2] = b[j+0]
+ p[i+3] = 0xFF
+ }
+ }
+ return rgba, nil
+}
+
+// decodeNRGBA reads a 32 bit-per-pixel BMP image from r.
+// If topDown is false, the image rows will be read bottom-up.
+func decodeNRGBA(r io.Reader, c image.Config, topDown bool) (image.Image, error) {
+ rgba := image.NewNRGBA(image.Rect(0, 0, c.Width, c.Height))
+ if c.Width == 0 || c.Height == 0 {
+ return rgba, nil
+ }
+ y0, y1, yDelta := c.Height-1, -1, -1
+ if topDown {
+ y0, y1, yDelta = 0, c.Height, +1
+ }
+ for y := y0; y != y1; y += yDelta {
+ p := rgba.Pix[y*rgba.Stride : y*rgba.Stride+c.Width*4]
+ if _, err := io.ReadFull(r, p); err != nil {
+ return nil, err
+ }
+ for i := 0; i < len(p); i += 4 {
+ // BMP images are stored in BGRA order rather than RGBA order.
+ p[i+0], p[i+2] = p[i+2], p[i+0]
+ }
+ }
+ return rgba, nil
+}
+
+// Decode reads a BMP image from r and returns it as an image.Image.
+// Limitation: The file must be 8, 24 or 32 bits per pixel.
+func Decode(r io.Reader) (image.Image, error) {
+ c, bpp, topDown, err := decodeConfig(r)
+ if err != nil {
+ return nil, err
+ }
+ switch bpp {
+ case 8:
+ return decodePaletted(r, c, topDown)
+ case 24:
+ return decodeRGB(r, c, topDown)
+ case 32:
+ return decodeNRGBA(r, c, topDown)
+ }
+ panic("unreachable")
+}
+
+// DecodeConfig returns the color model and dimensions of a BMP image without
+// decoding the entire image.
+// Limitation: The file must be 8, 24 or 32 bits per pixel.
+func DecodeConfig(r io.Reader) (image.Config, error) {
+ config, _, _, err := decodeConfig(r)
+ return config, err
+}
+
+func decodeConfig(r io.Reader) (config image.Config, bitsPerPixel int, topDown bool, err error) {
+ // We only support those BMP images that are a BITMAPFILEHEADER
+ // immediately followed by a BITMAPINFOHEADER.
+ const (
+ fileHeaderLen = 14
+ infoHeaderLen = 40
+ v4InfoHeaderLen = 108
+ v5InfoHeaderLen = 124
+ )
+ var b [1024]byte
+ if _, err := io.ReadFull(r, b[:fileHeaderLen+4]); err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return image.Config{}, 0, false, err
+ }
+ if string(b[:2]) != "BM" {
+ return image.Config{}, 0, false, errors.New("bmp: invalid format")
+ }
+ offset := readUint32(b[10:14])
+ infoLen := readUint32(b[14:18])
+ if infoLen != infoHeaderLen && infoLen != v4InfoHeaderLen && infoLen != v5InfoHeaderLen {
+ return image.Config{}, 0, false, ErrUnsupported
+ }
+ if _, err := io.ReadFull(r, b[fileHeaderLen+4:fileHeaderLen+infoLen]); err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return image.Config{}, 0, false, err
+ }
+ width := int(int32(readUint32(b[18:22])))
+ height := int(int32(readUint32(b[22:26])))
+ if height < 0 {
+ height, topDown = -height, true
+ }
+ if width < 0 || height < 0 {
+ return image.Config{}, 0, false, ErrUnsupported
+ }
+ // We only support 1 plane and 8, 24 or 32 bits per pixel and no
+ // compression.
+ planes, bpp, compression := readUint16(b[26:28]), readUint16(b[28:30]), readUint32(b[30:34])
+ // if compression is set to BITFIELDS, but the bitmask is set to the default bitmask
+ // that would be used if compression was set to 0, we can continue as if compression was 0
+ if compression == 3 && infoLen > infoHeaderLen &&
+ readUint32(b[54:58]) == 0xff0000 && readUint32(b[58:62]) == 0xff00 &&
+ readUint32(b[62:66]) == 0xff && readUint32(b[66:70]) == 0xff000000 {
+ compression = 0
+ }
+ if planes != 1 || compression != 0 {
+ return image.Config{}, 0, false, ErrUnsupported
+ }
+ switch bpp {
+ case 8:
+ if offset != fileHeaderLen+infoLen+256*4 {
+ return image.Config{}, 0, false, ErrUnsupported
+ }
+ _, err = io.ReadFull(r, b[:256*4])
+ if err != nil {
+ return image.Config{}, 0, false, err
+ }
+ pcm := make(color.Palette, 256)
+ for i := range pcm {
+ // BMP images are stored in BGR order rather than RGB order.
+ // Every 4th byte is padding.
+ pcm[i] = color.RGBA{b[4*i+2], b[4*i+1], b[4*i+0], 0xFF}
+ }
+ return image.Config{ColorModel: pcm, Width: width, Height: height}, 8, topDown, nil
+ case 24:
+ if offset != fileHeaderLen+infoLen {
+ return image.Config{}, 0, false, ErrUnsupported
+ }
+ return image.Config{ColorModel: color.RGBAModel, Width: width, Height: height}, 24, topDown, nil
+ case 32:
+ if offset != fileHeaderLen+infoLen {
+ return image.Config{}, 0, false, ErrUnsupported
+ }
+ return image.Config{ColorModel: color.RGBAModel, Width: width, Height: height}, 32, topDown, nil
+ }
+ return image.Config{}, 0, false, ErrUnsupported
+}
+
+func init() {
+ image.RegisterFormat("bmp", "BM????\x00\x00\x00\x00", Decode, DecodeConfig)
+}
diff --git a/vendor/golang.org/x/image/bmp/writer.go b/vendor/golang.org/x/image/bmp/writer.go
new file mode 100644
index 00000000..f07b39db
--- /dev/null
+++ b/vendor/golang.org/x/image/bmp/writer.go
@@ -0,0 +1,262 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bmp
+
+import (
+ "encoding/binary"
+ "errors"
+ "image"
+ "io"
+)
+
+type header struct {
+ sigBM [2]byte
+ fileSize uint32
+ resverved [2]uint16
+ pixOffset uint32
+ dibHeaderSize uint32
+ width uint32
+ height uint32
+ colorPlane uint16
+ bpp uint16
+ compression uint32
+ imageSize uint32
+ xPixelsPerMeter uint32
+ yPixelsPerMeter uint32
+ colorUse uint32
+ colorImportant uint32
+}
+
+func encodePaletted(w io.Writer, pix []uint8, dx, dy, stride, step int) error {
+ var padding []byte
+ if dx < step {
+ padding = make([]byte, step-dx)
+ }
+ for y := dy - 1; y >= 0; y-- {
+ min := y*stride + 0
+ max := y*stride + dx
+ if _, err := w.Write(pix[min:max]); err != nil {
+ return err
+ }
+ if padding != nil {
+ if _, err := w.Write(padding); err != nil {
+ return err
+ }
+ }
+ }
+ return nil
+}
+
+func encodeRGBA(w io.Writer, pix []uint8, dx, dy, stride, step int, opaque bool) error {
+ buf := make([]byte, step)
+ if opaque {
+ for y := dy - 1; y >= 0; y-- {
+ min := y*stride + 0
+ max := y*stride + dx*4
+ off := 0
+ for i := min; i < max; i += 4 {
+ buf[off+2] = pix[i+0]
+ buf[off+1] = pix[i+1]
+ buf[off+0] = pix[i+2]
+ off += 3
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ } else {
+ for y := dy - 1; y >= 0; y-- {
+ min := y*stride + 0
+ max := y*stride + dx*4
+ off := 0
+ for i := min; i < max; i += 4 {
+ a := uint32(pix[i+3])
+ if a == 0 {
+ buf[off+2] = 0
+ buf[off+1] = 0
+ buf[off+0] = 0
+ buf[off+3] = 0
+ off += 4
+ continue
+ } else if a == 0xff {
+ buf[off+2] = pix[i+0]
+ buf[off+1] = pix[i+1]
+ buf[off+0] = pix[i+2]
+ buf[off+3] = 0xff
+ off += 4
+ continue
+ }
+ buf[off+2] = uint8(((uint32(pix[i+0]) * 0xffff) / a) >> 8)
+ buf[off+1] = uint8(((uint32(pix[i+1]) * 0xffff) / a) >> 8)
+ buf[off+0] = uint8(((uint32(pix[i+2]) * 0xffff) / a) >> 8)
+ buf[off+3] = uint8(a)
+ off += 4
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ }
+ return nil
+}
+
+func encodeNRGBA(w io.Writer, pix []uint8, dx, dy, stride, step int, opaque bool) error {
+ buf := make([]byte, step)
+ if opaque {
+ for y := dy - 1; y >= 0; y-- {
+ min := y*stride + 0
+ max := y*stride + dx*4
+ off := 0
+ for i := min; i < max; i += 4 {
+ buf[off+2] = pix[i+0]
+ buf[off+1] = pix[i+1]
+ buf[off+0] = pix[i+2]
+ off += 3
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ } else {
+ for y := dy - 1; y >= 0; y-- {
+ min := y*stride + 0
+ max := y*stride + dx*4
+ off := 0
+ for i := min; i < max; i += 4 {
+ buf[off+2] = pix[i+0]
+ buf[off+1] = pix[i+1]
+ buf[off+0] = pix[i+2]
+ buf[off+3] = pix[i+3]
+ off += 4
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ }
+ return nil
+}
+
+func encode(w io.Writer, m image.Image, step int) error {
+ b := m.Bounds()
+ buf := make([]byte, step)
+ for y := b.Max.Y - 1; y >= b.Min.Y; y-- {
+ off := 0
+ for x := b.Min.X; x < b.Max.X; x++ {
+ r, g, b, _ := m.At(x, y).RGBA()
+ buf[off+2] = byte(r >> 8)
+ buf[off+1] = byte(g >> 8)
+ buf[off+0] = byte(b >> 8)
+ off += 3
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+// Encode writes the image m to w in BMP format.
+func Encode(w io.Writer, m image.Image) error {
+ d := m.Bounds().Size()
+ if d.X < 0 || d.Y < 0 {
+ return errors.New("bmp: negative bounds")
+ }
+ h := &header{
+ sigBM: [2]byte{'B', 'M'},
+ fileSize: 14 + 40,
+ pixOffset: 14 + 40,
+ dibHeaderSize: 40,
+ width: uint32(d.X),
+ height: uint32(d.Y),
+ colorPlane: 1,
+ }
+
+ var step int
+ var palette []byte
+ var opaque bool
+ switch m := m.(type) {
+ case *image.Gray:
+ step = (d.X + 3) &^ 3
+ palette = make([]byte, 1024)
+ for i := 0; i < 256; i++ {
+ palette[i*4+0] = uint8(i)
+ palette[i*4+1] = uint8(i)
+ palette[i*4+2] = uint8(i)
+ palette[i*4+3] = 0xFF
+ }
+ h.imageSize = uint32(d.Y * step)
+ h.fileSize += uint32(len(palette)) + h.imageSize
+ h.pixOffset += uint32(len(palette))
+ h.bpp = 8
+
+ case *image.Paletted:
+ step = (d.X + 3) &^ 3
+ palette = make([]byte, 1024)
+ for i := 0; i < len(m.Palette) && i < 256; i++ {
+ r, g, b, _ := m.Palette[i].RGBA()
+ palette[i*4+0] = uint8(b >> 8)
+ palette[i*4+1] = uint8(g >> 8)
+ palette[i*4+2] = uint8(r >> 8)
+ palette[i*4+3] = 0xFF
+ }
+ h.imageSize = uint32(d.Y * step)
+ h.fileSize += uint32(len(palette)) + h.imageSize
+ h.pixOffset += uint32(len(palette))
+ h.bpp = 8
+ case *image.RGBA:
+ opaque = m.Opaque()
+ if opaque {
+ step = (3*d.X + 3) &^ 3
+ h.bpp = 24
+ } else {
+ step = 4 * d.X
+ h.bpp = 32
+ }
+ h.imageSize = uint32(d.Y * step)
+ h.fileSize += h.imageSize
+ case *image.NRGBA:
+ opaque = m.Opaque()
+ if opaque {
+ step = (3*d.X + 3) &^ 3
+ h.bpp = 24
+ } else {
+ step = 4 * d.X
+ h.bpp = 32
+ }
+ h.imageSize = uint32(d.Y * step)
+ h.fileSize += h.imageSize
+ default:
+ step = (3*d.X + 3) &^ 3
+ h.imageSize = uint32(d.Y * step)
+ h.fileSize += h.imageSize
+ h.bpp = 24
+ }
+
+ if err := binary.Write(w, binary.LittleEndian, h); err != nil {
+ return err
+ }
+ if palette != nil {
+ if err := binary.Write(w, binary.LittleEndian, palette); err != nil {
+ return err
+ }
+ }
+
+ if d.X == 0 || d.Y == 0 {
+ return nil
+ }
+
+ switch m := m.(type) {
+ case *image.Gray:
+ return encodePaletted(w, m.Pix, d.X, d.Y, m.Stride, step)
+ case *image.Paletted:
+ return encodePaletted(w, m.Pix, d.X, d.Y, m.Stride, step)
+ case *image.RGBA:
+ return encodeRGBA(w, m.Pix, d.X, d.Y, m.Stride, step, opaque)
+ case *image.NRGBA:
+ return encodeNRGBA(w, m.Pix, d.X, d.Y, m.Stride, step, opaque)
+ }
+ return encode(w, m, step)
+}
diff --git a/vendor/golang.org/x/image/ccitt/reader.go b/vendor/golang.org/x/image/ccitt/reader.go
new file mode 100644
index 00000000..340de053
--- /dev/null
+++ b/vendor/golang.org/x/image/ccitt/reader.go
@@ -0,0 +1,795 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate go run gen.go
+
+// Package ccitt implements a CCITT (fax) image decoder.
+package ccitt
+
+import (
+ "encoding/binary"
+ "errors"
+ "image"
+ "io"
+ "math/bits"
+)
+
+var (
+ errIncompleteCode = errors.New("ccitt: incomplete code")
+ errInvalidBounds = errors.New("ccitt: invalid bounds")
+ errInvalidCode = errors.New("ccitt: invalid code")
+ errInvalidMode = errors.New("ccitt: invalid mode")
+ errInvalidOffset = errors.New("ccitt: invalid offset")
+ errMissingEOL = errors.New("ccitt: missing End-of-Line")
+ errRunLengthOverflowsWidth = errors.New("ccitt: run length overflows width")
+ errRunLengthTooLong = errors.New("ccitt: run length too long")
+ errUnsupportedMode = errors.New("ccitt: unsupported mode")
+ errUnsupportedSubFormat = errors.New("ccitt: unsupported sub-format")
+ errUnsupportedWidth = errors.New("ccitt: unsupported width")
+)
+
+// Order specifies the bit ordering in a CCITT data stream.
+type Order uint32
+
+const (
+ // LSB means Least Significant Bits first.
+ LSB Order = iota
+ // MSB means Most Significant Bits first.
+ MSB
+)
+
+// SubFormat represents that the CCITT format consists of a number of
+// sub-formats. Decoding or encoding a CCITT data stream requires knowing the
+// sub-format context. It is not represented in the data stream per se.
+type SubFormat uint32
+
+const (
+ Group3 SubFormat = iota
+ Group4
+)
+
+// AutoDetectHeight is passed as the height argument to NewReader to indicate
+// that the image height (the number of rows) is not known in advance.
+const AutoDetectHeight = -1
+
+// Options are optional parameters.
+type Options struct {
+ // Align means that some variable-bit-width codes are byte-aligned.
+ Align bool
+ // Invert means that black is the 1 bit or 0xFF byte, and white is 0.
+ Invert bool
+}
+
+// maxWidth is the maximum (inclusive) supported width. This is a limitation of
+// this implementation, to guard against integer overflow, and not anything
+// inherent to the CCITT format.
+const maxWidth = 1 << 20
+
+func invertBytes(b []byte) {
+ for i, c := range b {
+ b[i] = ^c
+ }
+}
+
+func reverseBitsWithinBytes(b []byte) {
+ for i, c := range b {
+ b[i] = bits.Reverse8(c)
+ }
+}
+
+// highBits writes to dst (1 bit per pixel, most significant bit first) the
+// high (0x80) bits from src (1 byte per pixel). It returns the number of bytes
+// written and read such that dst[:d] is the packed form of src[:s].
+//
+// For example, if src starts with the 8 bytes [0x7D, 0x7E, 0x7F, 0x80, 0x81,
+// 0x82, 0x00, 0xFF] then 0x1D will be written to dst[0].
+//
+// If src has (8 * len(dst)) or more bytes then only len(dst) bytes are
+// written, (8 * len(dst)) bytes are read, and invert is ignored.
+//
+// Otherwise, if len(src) is not a multiple of 8 then the final byte written to
+// dst is padded with 1 bits (if invert is true) or 0 bits. If inverted, the 1s
+// are typically temporary, e.g. they will be flipped back to 0s by an
+// invertBytes call in the highBits caller, reader.Read.
+func highBits(dst []byte, src []byte, invert bool) (d int, s int) {
+ // Pack as many complete groups of 8 src bytes as we can.
+ n := len(src) / 8
+ if n > len(dst) {
+ n = len(dst)
+ }
+ dstN := dst[:n]
+ for i := range dstN {
+ src8 := src[i*8 : i*8+8]
+ dstN[i] = ((src8[0] & 0x80) >> 0) |
+ ((src8[1] & 0x80) >> 1) |
+ ((src8[2] & 0x80) >> 2) |
+ ((src8[3] & 0x80) >> 3) |
+ ((src8[4] & 0x80) >> 4) |
+ ((src8[5] & 0x80) >> 5) |
+ ((src8[6] & 0x80) >> 6) |
+ ((src8[7] & 0x80) >> 7)
+ }
+ d, s = n, 8*n
+ dst, src = dst[d:], src[s:]
+
+ // Pack up to 7 remaining src bytes, if there's room in dst.
+ if (len(dst) > 0) && (len(src) > 0) {
+ dstByte := byte(0)
+ if invert {
+ dstByte = 0xFF >> uint(len(src))
+ }
+ for n, srcByte := range src {
+ dstByte |= (srcByte & 0x80) >> uint(n)
+ }
+ dst[0] = dstByte
+ d, s = d+1, s+len(src)
+ }
+ return d, s
+}
+
+type bitReader struct {
+ r io.Reader
+
+ // readErr is the error returned from the most recent r.Read call. As the
+ // io.Reader documentation says, when r.Read returns (n, err), "always
+ // process the n > 0 bytes returned before considering the error err".
+ readErr error
+
+ // order is whether to process r's bytes LSB first or MSB first.
+ order Order
+
+ // The high nBits bits of the bits field hold upcoming bits in MSB order.
+ bits uint64
+ nBits uint32
+
+ // bytes[br:bw] holds bytes read from r but not yet loaded into bits.
+ br uint32
+ bw uint32
+ bytes [1024]uint8
+}
+
+func (b *bitReader) alignToByteBoundary() {
+ n := b.nBits & 7
+ b.bits <<= n
+ b.nBits -= n
+}
+
+// nextBitMaxNBits is the maximum possible value of bitReader.nBits after a
+// bitReader.nextBit call, provided that bitReader.nBits was not more than this
+// value before that call.
+//
+// Note that the decode function can unread bits, which can temporarily set the
+// bitReader.nBits value above nextBitMaxNBits.
+const nextBitMaxNBits = 31
+
+func (b *bitReader) nextBit() (uint64, error) {
+ for {
+ if b.nBits > 0 {
+ bit := b.bits >> 63
+ b.bits <<= 1
+ b.nBits--
+ return bit, nil
+ }
+
+ if available := b.bw - b.br; available >= 4 {
+ // Read 32 bits, even though b.bits is a uint64, since the decode
+ // function may need to unread up to maxCodeLength bits, putting
+ // them back in the remaining (64 - 32) bits. TestMaxCodeLength
+ // checks that the generated maxCodeLength constant fits.
+ //
+ // If changing the Uint32 call, also change nextBitMaxNBits.
+ b.bits = uint64(binary.BigEndian.Uint32(b.bytes[b.br:])) << 32
+ b.br += 4
+ b.nBits = 32
+ continue
+ } else if available > 0 {
+ b.bits = uint64(b.bytes[b.br]) << (7 * 8)
+ b.br++
+ b.nBits = 8
+ continue
+ }
+
+ if b.readErr != nil {
+ return 0, b.readErr
+ }
+
+ n, err := b.r.Read(b.bytes[:])
+ b.br = 0
+ b.bw = uint32(n)
+ b.readErr = err
+
+ if b.order != MSB {
+ reverseBitsWithinBytes(b.bytes[:b.bw])
+ }
+ }
+}
+
+func decode(b *bitReader, decodeTable [][2]int16) (uint32, error) {
+ nBitsRead, bitsRead, state := uint32(0), uint64(0), int32(1)
+ for {
+ bit, err := b.nextBit()
+ if err != nil {
+ if err == io.EOF {
+ err = errIncompleteCode
+ }
+ return 0, err
+ }
+ bitsRead |= bit << (63 - nBitsRead)
+ nBitsRead++
+
+ // The "&1" is redundant, but can eliminate a bounds check.
+ state = int32(decodeTable[state][bit&1])
+ if state < 0 {
+ return uint32(^state), nil
+ } else if state == 0 {
+ // Unread the bits we've read, then return errInvalidCode.
+ b.bits = (b.bits >> nBitsRead) | bitsRead
+ b.nBits += nBitsRead
+ return 0, errInvalidCode
+ }
+ }
+}
+
+// decodeEOL decodes the 12-bit EOL code 0000_0000_0001.
+func decodeEOL(b *bitReader) error {
+ nBitsRead, bitsRead := uint32(0), uint64(0)
+ for {
+ bit, err := b.nextBit()
+ if err != nil {
+ if err == io.EOF {
+ err = errMissingEOL
+ }
+ return err
+ }
+ bitsRead |= bit << (63 - nBitsRead)
+ nBitsRead++
+
+ if nBitsRead < 12 {
+ if bit&1 == 0 {
+ continue
+ }
+ } else if bit&1 != 0 {
+ return nil
+ }
+
+ // Unread the bits we've read, then return errMissingEOL.
+ b.bits = (b.bits >> nBitsRead) | bitsRead
+ b.nBits += nBitsRead
+ return errMissingEOL
+ }
+}
+
+type reader struct {
+ br bitReader
+ subFormat SubFormat
+
+ // width is the image width in pixels.
+ width int
+
+ // rowsRemaining starts at the image height in pixels, when the reader is
+ // driven through the io.Reader interface, and decrements to zero as rows
+ // are decoded. Alternatively, it may be negative if the image height is
+ // not known in advance at the time of the NewReader call.
+ //
+ // When driven through DecodeIntoGray, this field is unused.
+ rowsRemaining int
+
+ // curr and prev hold the current and previous rows. Each element is either
+ // 0x00 (black) or 0xFF (white).
+ //
+ // prev may be nil, when processing the first row.
+ curr []byte
+ prev []byte
+
+ // ri is the read index. curr[:ri] are those bytes of curr that have been
+ // passed along via the Read method.
+ //
+ // When the reader is driven through DecodeIntoGray, instead of through the
+ // io.Reader interface, this field is unused.
+ ri int
+
+ // wi is the write index. curr[:wi] are those bytes of curr that have
+ // already been decoded via the decodeRow method.
+ //
+ // What this implementation calls wi is roughly equivalent to what the spec
+ // calls the a0 index.
+ wi int
+
+ // These fields are copied from the *Options (which may be nil).
+ align bool
+ invert bool
+
+ // atStartOfRow is whether we have just started the row. Some parts of the
+ // spec say to treat this situation as if "wi = -1".
+ atStartOfRow bool
+
+ // penColorIsWhite is whether the next run is black or white.
+ penColorIsWhite bool
+
+ // seenStartOfImage is whether we've called the startDecode method.
+ seenStartOfImage bool
+
+ // truncated is whether the input is missing the final 6 consecutive EOL's
+ // (for Group3) or 2 consecutive EOL's (for Group4). Omitting that trailer
+ // (but otherwise padding to a byte boundary, with either all 0 bits or all
+ // 1 bits) is invalid according to the spec, but happens in practice when
+ // exporting from Adobe Acrobat to TIFF + CCITT. This package silently
+ // ignores the format error for CCITT input that has been truncated in that
+ // fashion, returning the full decoded image.
+ //
+ // Detecting trailer truncation (just after the final row of pixels)
+ // requires knowing which row is the final row, and therefore does not
+ // trigger if the image height is not known in advance.
+ truncated bool
+
+ // readErr is a sticky error for the Read method.
+ readErr error
+}
+
+func (z *reader) Read(p []byte) (int, error) {
+ if z.readErr != nil {
+ return 0, z.readErr
+ }
+ originalP := p
+
+ for len(p) > 0 {
+ // Allocate buffers (and decode any start-of-image codes), if
+ // processing the first or second row.
+ if z.curr == nil {
+ if !z.seenStartOfImage {
+ if z.readErr = z.startDecode(); z.readErr != nil {
+ break
+ }
+ z.atStartOfRow = true
+ }
+ z.curr = make([]byte, z.width)
+ }
+
+ // Decode the next row, if necessary.
+ if z.atStartOfRow {
+ if z.rowsRemaining < 0 {
+ // We do not know the image height in advance. See if the next
+ // code is an EOL. If it is, it is consumed. If it isn't, the
+ // bitReader shouldn't advance along the bit stream, and we
+ // simply decode another row of pixel data.
+ //
+ // For the Group4 subFormat, we may need to align to a byte
+ // boundary. For the Group3 subFormat, the previous z.decodeRow
+ // call (or z.startDecode call) has already consumed one of the
+ // 6 consecutive EOL's. The next EOL is actually the second of
+ // 6, in the middle, and we shouldn't align at that point.
+ if z.align && (z.subFormat == Group4) {
+ z.br.alignToByteBoundary()
+ }
+
+ if err := z.decodeEOL(); err == errMissingEOL {
+ // No-op. It's another row of pixel data.
+ } else if err != nil {
+ z.readErr = err
+ break
+ } else {
+ if z.readErr = z.finishDecode(true); z.readErr != nil {
+ break
+ }
+ z.readErr = io.EOF
+ break
+ }
+
+ } else if z.rowsRemaining == 0 {
+ // We do know the image height in advance, and we have already
+ // decoded exactly that many rows.
+ if z.readErr = z.finishDecode(false); z.readErr != nil {
+ break
+ }
+ z.readErr = io.EOF
+ break
+
+ } else {
+ z.rowsRemaining--
+ }
+
+ if z.readErr = z.decodeRow(z.rowsRemaining == 0); z.readErr != nil {
+ break
+ }
+ }
+
+ // Pack from z.curr (1 byte per pixel) to p (1 bit per pixel).
+ packD, packS := highBits(p, z.curr[z.ri:], z.invert)
+ p = p[packD:]
+ z.ri += packS
+
+ // Prepare to decode the next row, if necessary.
+ if z.ri == len(z.curr) {
+ z.ri, z.curr, z.prev = 0, z.prev, z.curr
+ z.atStartOfRow = true
+ }
+ }
+
+ n := len(originalP) - len(p)
+ if z.invert {
+ invertBytes(originalP[:n])
+ }
+ return n, z.readErr
+}
+
+func (z *reader) penColor() byte {
+ if z.penColorIsWhite {
+ return 0xFF
+ }
+ return 0x00
+}
+
+func (z *reader) startDecode() error {
+ switch z.subFormat {
+ case Group3:
+ if err := z.decodeEOL(); err != nil {
+ return err
+ }
+
+ case Group4:
+ // No-op.
+
+ default:
+ return errUnsupportedSubFormat
+ }
+
+ z.seenStartOfImage = true
+ return nil
+}
+
+func (z *reader) finishDecode(alreadySeenEOL bool) error {
+ numberOfEOLs := 0
+ switch z.subFormat {
+ case Group3:
+ if z.truncated {
+ return nil
+ }
+ // The stream ends with a RTC (Return To Control) of 6 consecutive
+ // EOL's, but we should have already just seen an EOL, either in
+ // z.startDecode (for a zero-height image) or in z.decodeRow.
+ numberOfEOLs = 5
+
+ case Group4:
+ autoDetectHeight := z.rowsRemaining < 0
+ if autoDetectHeight {
+ // Aligning to a byte boundary was already handled by reader.Read.
+ } else if z.align {
+ z.br.alignToByteBoundary()
+ }
+ // The stream ends with two EOL's. If the first one is missing, and we
+ // had an explicit image height, we just assume that the trailing two
+ // EOL's were truncated and return a nil error.
+ if err := z.decodeEOL(); err != nil {
+ if (err == errMissingEOL) && !autoDetectHeight {
+ z.truncated = true
+ return nil
+ }
+ return err
+ }
+ numberOfEOLs = 1
+
+ default:
+ return errUnsupportedSubFormat
+ }
+
+ if alreadySeenEOL {
+ numberOfEOLs--
+ }
+ for ; numberOfEOLs > 0; numberOfEOLs-- {
+ if err := z.decodeEOL(); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func (z *reader) decodeEOL() error {
+ return decodeEOL(&z.br)
+}
+
+func (z *reader) decodeRow(finalRow bool) error {
+ z.wi = 0
+ z.atStartOfRow = true
+ z.penColorIsWhite = true
+
+ if z.align {
+ z.br.alignToByteBoundary()
+ }
+
+ switch z.subFormat {
+ case Group3:
+ for ; z.wi < len(z.curr); z.atStartOfRow = false {
+ if err := z.decodeRun(); err != nil {
+ return err
+ }
+ }
+ err := z.decodeEOL()
+ if finalRow && (err == errMissingEOL) {
+ z.truncated = true
+ return nil
+ }
+ return err
+
+ case Group4:
+ for ; z.wi < len(z.curr); z.atStartOfRow = false {
+ mode, err := decode(&z.br, modeDecodeTable[:])
+ if err != nil {
+ return err
+ }
+ rm := readerMode{}
+ if mode < uint32(len(readerModes)) {
+ rm = readerModes[mode]
+ }
+ if rm.function == nil {
+ return errInvalidMode
+ }
+ if err := rm.function(z, rm.arg); err != nil {
+ return err
+ }
+ }
+ return nil
+ }
+
+ return errUnsupportedSubFormat
+}
+
+func (z *reader) decodeRun() error {
+ table := blackDecodeTable[:]
+ if z.penColorIsWhite {
+ table = whiteDecodeTable[:]
+ }
+
+ total := 0
+ for {
+ n, err := decode(&z.br, table)
+ if err != nil {
+ return err
+ }
+ if n > maxWidth {
+ panic("unreachable")
+ }
+ total += int(n)
+ if total > maxWidth {
+ return errRunLengthTooLong
+ }
+ // Anything 0x3F or below is a terminal code.
+ if n <= 0x3F {
+ break
+ }
+ }
+
+ if total > (len(z.curr) - z.wi) {
+ return errRunLengthOverflowsWidth
+ }
+ dst := z.curr[z.wi : z.wi+total]
+ penColor := z.penColor()
+ for i := range dst {
+ dst[i] = penColor
+ }
+ z.wi += total
+ z.penColorIsWhite = !z.penColorIsWhite
+
+ return nil
+}
+
+// The various modes' semantics are based on determining a row of pixels'
+// "changing elements": those pixels whose color differs from the one on its
+// immediate left.
+//
+// The row above the first row is implicitly all white. Similarly, the column
+// to the left of the first column is implicitly all white.
+//
+// For example, here's Figure 1 in "ITU-T Recommendation T.6", where the
+// current and previous rows contain black (B) and white (w) pixels. The a?
+// indexes point into curr, the b? indexes point into prev.
+//
+// b1 b2
+// v v
+// prev: BBBBBwwwwwBBBwwwww
+// curr: BBBwwwwwBBBBBBwwww
+// ^ ^ ^
+// a0 a1 a2
+//
+// a0 is the "reference element" or current decoder position, roughly
+// equivalent to what this implementation calls reader.wi.
+//
+// a1 is the next changing element to the right of a0, on the "coding line"
+// (the current row).
+//
+// a2 is the next changing element to the right of a1, again on curr.
+//
+// b1 is the first changing element on the "reference line" (the previous row)
+// to the right of a0 and of opposite color to a0.
+//
+// b2 is the next changing element to the right of b1, again on prev.
+//
+// The various modes calculate a1 (and a2, for modeH):
+// - modePass calculates that a1 is at or to the right of b2.
+// - modeH calculates a1 and a2 without considering b1 or b2.
+// - modeV* calculates a1 to be b1 plus an adjustment (between -3 and +3).
+
+const (
+ findB1 = false
+ findB2 = true
+)
+
+// findB finds either the b1 or b2 value.
+func (z *reader) findB(whichB bool) int {
+ // The initial row is a special case. The previous row is implicitly all
+ // white, so that there are no changing pixel elements. We return b1 or b2
+ // to be at the end of the row.
+ if len(z.prev) != len(z.curr) {
+ return len(z.curr)
+ }
+
+ i := z.wi
+
+ if z.atStartOfRow {
+ // a0 is implicitly at -1, on a white pixel. b1 is the first black
+ // pixel in the previous row. b2 is the first white pixel after that.
+ for ; (i < len(z.prev)) && (z.prev[i] == 0xFF); i++ {
+ }
+ if whichB == findB2 {
+ for ; (i < len(z.prev)) && (z.prev[i] == 0x00); i++ {
+ }
+ }
+ return i
+ }
+
+ // As per figure 1 above, assume that the current pen color is white.
+ // First, walk past every contiguous black pixel in prev, starting at a0.
+ oppositeColor := ^z.penColor()
+ for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
+ }
+
+ // Then walk past every contiguous white pixel.
+ penColor := ^oppositeColor
+ for ; (i < len(z.prev)) && (z.prev[i] == penColor); i++ {
+ }
+
+ // We're now at a black pixel (or at the end of the row). That's b1.
+ if whichB == findB2 {
+ // If we're looking for b2, walk past every contiguous black pixel
+ // again.
+ oppositeColor := ^penColor
+ for ; (i < len(z.prev)) && (z.prev[i] == oppositeColor); i++ {
+ }
+ }
+
+ return i
+}
+
+type readerMode struct {
+ function func(z *reader, arg int) error
+ arg int
+}
+
+var readerModes = [...]readerMode{
+ modePass: {function: readerModePass},
+ modeH: {function: readerModeH},
+ modeV0: {function: readerModeV, arg: +0},
+ modeVR1: {function: readerModeV, arg: +1},
+ modeVR2: {function: readerModeV, arg: +2},
+ modeVR3: {function: readerModeV, arg: +3},
+ modeVL1: {function: readerModeV, arg: -1},
+ modeVL2: {function: readerModeV, arg: -2},
+ modeVL3: {function: readerModeV, arg: -3},
+ modeExt: {function: readerModeExt},
+}
+
+func readerModePass(z *reader, arg int) error {
+ b2 := z.findB(findB2)
+ if (b2 < z.wi) || (len(z.curr) < b2) {
+ return errInvalidOffset
+ }
+ dst := z.curr[z.wi:b2]
+ penColor := z.penColor()
+ for i := range dst {
+ dst[i] = penColor
+ }
+ z.wi = b2
+ return nil
+}
+
+func readerModeH(z *reader, arg int) error {
+ // The first iteration finds a1. The second finds a2.
+ for i := 0; i < 2; i++ {
+ if err := z.decodeRun(); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func readerModeV(z *reader, arg int) error {
+ a1 := z.findB(findB1) + arg
+ if (a1 < z.wi) || (len(z.curr) < a1) {
+ return errInvalidOffset
+ }
+ dst := z.curr[z.wi:a1]
+ penColor := z.penColor()
+ for i := range dst {
+ dst[i] = penColor
+ }
+ z.wi = a1
+ z.penColorIsWhite = !z.penColorIsWhite
+ return nil
+}
+
+func readerModeExt(z *reader, arg int) error {
+ return errUnsupportedMode
+}
+
+// DecodeIntoGray decodes the CCITT-formatted data in r into dst.
+//
+// It returns an error if dst's width and height don't match the implied width
+// and height of CCITT-formatted data.
+func DecodeIntoGray(dst *image.Gray, r io.Reader, order Order, sf SubFormat, opts *Options) error {
+ bounds := dst.Bounds()
+ if (bounds.Dx() < 0) || (bounds.Dy() < 0) {
+ return errInvalidBounds
+ }
+ if bounds.Dx() > maxWidth {
+ return errUnsupportedWidth
+ }
+
+ z := reader{
+ br: bitReader{r: r, order: order},
+ subFormat: sf,
+ align: (opts != nil) && opts.Align,
+ invert: (opts != nil) && opts.Invert,
+ width: bounds.Dx(),
+ }
+ if err := z.startDecode(); err != nil {
+ return err
+ }
+
+ width := bounds.Dx()
+ for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
+ p := (y - bounds.Min.Y) * dst.Stride
+ z.curr = dst.Pix[p : p+width]
+ if err := z.decodeRow(y+1 == bounds.Max.Y); err != nil {
+ return err
+ }
+ z.curr, z.prev = nil, z.curr
+ }
+
+ if err := z.finishDecode(false); err != nil {
+ return err
+ }
+
+ if z.invert {
+ for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
+ p := (y - bounds.Min.Y) * dst.Stride
+ invertBytes(dst.Pix[p : p+width])
+ }
+ }
+
+ return nil
+}
+
+// NewReader returns an io.Reader that decodes the CCITT-formatted data in r.
+// The resultant byte stream is one bit per pixel (MSB first), with 1 meaning
+// white and 0 meaning black. Each row in the result is byte-aligned.
+//
+// A negative height, such as passing AutoDetectHeight, means that the image
+// height is not known in advance. A negative width is invalid.
+func NewReader(r io.Reader, order Order, sf SubFormat, width int, height int, opts *Options) io.Reader {
+ readErr := error(nil)
+ if width < 0 {
+ readErr = errInvalidBounds
+ } else if width > maxWidth {
+ readErr = errUnsupportedWidth
+ }
+
+ return &reader{
+ br: bitReader{r: r, order: order},
+ subFormat: sf,
+ align: (opts != nil) && opts.Align,
+ invert: (opts != nil) && opts.Invert,
+ width: width,
+ rowsRemaining: height,
+ readErr: readErr,
+ }
+}
diff --git a/vendor/golang.org/x/image/ccitt/table.go b/vendor/golang.org/x/image/ccitt/table.go
new file mode 100644
index 00000000..ef7ea9d4
--- /dev/null
+++ b/vendor/golang.org/x/image/ccitt/table.go
@@ -0,0 +1,972 @@
+// generated by "go run gen.go". DO NOT EDIT.
+
+package ccitt
+
+// Each decodeTable is represented by an array of [2]int16's: a binary tree.
+// Each array element (other than element 0, which means invalid) is a branch
+// node in that tree. The root node is always element 1 (the second element).
+//
+// To walk the tree, look at the next bit in the bit stream, using it to select
+// the first or second element of the [2]int16. If that int16 is 0, we have an
+// invalid code. If it is positive, go to that branch node. If it is negative,
+// then we have a leaf node, whose value is the bitwise complement (the ^
+// operator) of that int16.
+//
+// Comments above each decodeTable also show the same structure visually. The
+// "b123" lines show the 123'rd branch node. The "=XXXXX" lines show an invalid
+// code. The "=v1234" lines show a leaf node with value 1234. When reading the
+// bit stream, a 0 or 1 bit means to go up or down, as you move left to right.
+//
+// For example, in modeDecodeTable, branch node b005 is three steps up from the
+// root node, meaning that we have already seen "000". If the next bit is "0"
+// then we move to branch node b006. Otherwise, the next bit is "1", and we
+// move to the leaf node v0000 (also known as the modePass constant). Indeed,
+// the bits that encode modePass are "0001".
+//
+// Tables 1, 2 and 3 come from the "ITU-T Recommendation T.6: FACSIMILE CODING
+// SCHEMES AND CODING CONTROL FUNCTIONS FOR GROUP 4 FACSIMILE APPARATUS"
+// specification:
+//
+// https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-T.6-198811-I!!PDF-E&type=items
+
+// modeDecodeTable represents Table 1 and the End-of-Line code.
+//
+// +=XXXXX
+// b009 +-+
+// | +=v0009
+// b007 +-+
+// | | +=v0008
+// b010 | +-+
+// | +=v0005
+// b006 +-+
+// | | +=v0007
+// b008 | +-+
+// | +=v0004
+// b005 +-+
+// | +=v0000
+// b003 +-+
+// | +=v0001
+// b002 +-+
+// | | +=v0006
+// b004 | +-+
+// | +=v0003
+// b001 +-+
+// +=v0002
+var modeDecodeTable = [...][2]int16{
+ 0: {0, 0},
+ 1: {2, ^2},
+ 2: {3, 4},
+ 3: {5, ^1},
+ 4: {^6, ^3},
+ 5: {6, ^0},
+ 6: {7, 8},
+ 7: {9, 10},
+ 8: {^7, ^4},
+ 9: {0, ^9},
+ 10: {^8, ^5},
+}
+
+// whiteDecodeTable represents Tables 2 and 3 for a white run.
+//
+// +=XXXXX
+// b059 +-+
+// | | +=v1792
+// b096 | | +-+
+// | | | | +=v1984
+// b100 | | | +-+
+// | | | +=v2048
+// b094 | | +-+
+// | | | | +=v2112
+// b101 | | | | +-+
+// | | | | | +=v2176
+// b097 | | | +-+
+// | | | | +=v2240
+// b102 | | | +-+
+// | | | +=v2304
+// b085 | +-+
+// | | +=v1856
+// b098 | | +-+
+// | | | +=v1920
+// b095 | +-+
+// | | +=v2368
+// b103 | | +-+
+// | | | +=v2432
+// b099 | +-+
+// | | +=v2496
+// b104 | +-+
+// | +=v2560
+// b040 +-+
+// | | +=v0029
+// b060 | +-+
+// | +=v0030
+// b026 +-+
+// | | +=v0045
+// b061 | | +-+
+// | | | +=v0046
+// b041 | +-+
+// | +=v0022
+// b016 +-+
+// | | +=v0023
+// b042 | | +-+
+// | | | | +=v0047
+// b062 | | | +-+
+// | | | +=v0048
+// b027 | +-+
+// | +=v0013
+// b008 +-+
+// | | +=v0020
+// b043 | | +-+
+// | | | | +=v0033
+// b063 | | | +-+
+// | | | +=v0034
+// b028 | | +-+
+// | | | | +=v0035
+// b064 | | | | +-+
+// | | | | | +=v0036
+// b044 | | | +-+
+// | | | | +=v0037
+// b065 | | | +-+
+// | | | +=v0038
+// b017 | +-+
+// | | +=v0019
+// b045 | | +-+
+// | | | | +=v0031
+// b066 | | | +-+
+// | | | +=v0032
+// b029 | +-+
+// | +=v0001
+// b004 +-+
+// | | +=v0012
+// b030 | | +-+
+// | | | | +=v0053
+// b067 | | | | +-+
+// | | | | | +=v0054
+// b046 | | | +-+
+// | | | +=v0026
+// b018 | | +-+
+// | | | | +=v0039
+// b068 | | | | +-+
+// | | | | | +=v0040
+// b047 | | | | +-+
+// | | | | | | +=v0041
+// b069 | | | | | +-+
+// | | | | | +=v0042
+// b031 | | | +-+
+// | | | | +=v0043
+// b070 | | | | +-+
+// | | | | | +=v0044
+// b048 | | | +-+
+// | | | +=v0021
+// b009 | +-+
+// | | +=v0028
+// b049 | | +-+
+// | | | | +=v0061
+// b071 | | | +-+
+// | | | +=v0062
+// b032 | | +-+
+// | | | | +=v0063
+// b072 | | | | +-+
+// | | | | | +=v0000
+// b050 | | | +-+
+// | | | | +=v0320
+// b073 | | | +-+
+// | | | +=v0384
+// b019 | +-+
+// | +=v0010
+// b002 +-+
+// | | +=v0011
+// b020 | | +-+
+// | | | | +=v0027
+// b051 | | | | +-+
+// | | | | | | +=v0059
+// b074 | | | | | +-+
+// | | | | | +=v0060
+// b033 | | | +-+
+// | | | | +=v1472
+// b086 | | | | +-+
+// | | | | | +=v1536
+// b075 | | | | +-+
+// | | | | | | +=v1600
+// b087 | | | | | +-+
+// | | | | | +=v1728
+// b052 | | | +-+
+// | | | +=v0018
+// b010 | | +-+
+// | | | | +=v0024
+// b053 | | | | +-+
+// | | | | | | +=v0049
+// b076 | | | | | +-+
+// | | | | | +=v0050
+// b034 | | | | +-+
+// | | | | | | +=v0051
+// b077 | | | | | | +-+
+// | | | | | | | +=v0052
+// b054 | | | | | +-+
+// | | | | | +=v0025
+// b021 | | | +-+
+// | | | | +=v0055
+// b078 | | | | +-+
+// | | | | | +=v0056
+// b055 | | | | +-+
+// | | | | | | +=v0057
+// b079 | | | | | +-+
+// | | | | | +=v0058
+// b035 | | | +-+
+// | | | +=v0192
+// b005 | +-+
+// | | +=v1664
+// b036 | | +-+
+// | | | | +=v0448
+// b080 | | | | +-+
+// | | | | | +=v0512
+// b056 | | | +-+
+// | | | | +=v0704
+// b088 | | | | +-+
+// | | | | | +=v0768
+// b081 | | | +-+
+// | | | +=v0640
+// b022 | | +-+
+// | | | | +=v0576
+// b082 | | | | +-+
+// | | | | | | +=v0832
+// b089 | | | | | +-+
+// | | | | | +=v0896
+// b057 | | | | +-+
+// | | | | | | +=v0960
+// b090 | | | | | | +-+
+// | | | | | | | +=v1024
+// b083 | | | | | +-+
+// | | | | | | +=v1088
+// b091 | | | | | +-+
+// | | | | | +=v1152
+// b037 | | | +-+
+// | | | | +=v1216
+// b092 | | | | +-+
+// | | | | | +=v1280
+// b084 | | | | +-+
+// | | | | | | +=v1344
+// b093 | | | | | +-+
+// | | | | | +=v1408
+// b058 | | | +-+
+// | | | +=v0256
+// b011 | +-+
+// | +=v0002
+// b001 +-+
+// | +=v0003
+// b012 | +-+
+// | | | +=v0128
+// b023 | | +-+
+// | | +=v0008
+// b006 | +-+
+// | | | +=v0009
+// b024 | | | +-+
+// | | | | | +=v0016
+// b038 | | | | +-+
+// | | | | +=v0017
+// b013 | | +-+
+// | | +=v0004
+// b003 +-+
+// | +=v0005
+// b014 | +-+
+// | | | +=v0014
+// b039 | | | +-+
+// | | | | +=v0015
+// b025 | | +-+
+// | | +=v0064
+// b007 +-+
+// | +=v0006
+// b015 +-+
+// +=v0007
+var whiteDecodeTable = [...][2]int16{
+ 0: {0, 0},
+ 1: {2, 3},
+ 2: {4, 5},
+ 3: {6, 7},
+ 4: {8, 9},
+ 5: {10, 11},
+ 6: {12, 13},
+ 7: {14, 15},
+ 8: {16, 17},
+ 9: {18, 19},
+ 10: {20, 21},
+ 11: {22, ^2},
+ 12: {^3, 23},
+ 13: {24, ^4},
+ 14: {^5, 25},
+ 15: {^6, ^7},
+ 16: {26, 27},
+ 17: {28, 29},
+ 18: {30, 31},
+ 19: {32, ^10},
+ 20: {^11, 33},
+ 21: {34, 35},
+ 22: {36, 37},
+ 23: {^128, ^8},
+ 24: {^9, 38},
+ 25: {39, ^64},
+ 26: {40, 41},
+ 27: {42, ^13},
+ 28: {43, 44},
+ 29: {45, ^1},
+ 30: {^12, 46},
+ 31: {47, 48},
+ 32: {49, 50},
+ 33: {51, 52},
+ 34: {53, 54},
+ 35: {55, ^192},
+ 36: {^1664, 56},
+ 37: {57, 58},
+ 38: {^16, ^17},
+ 39: {^14, ^15},
+ 40: {59, 60},
+ 41: {61, ^22},
+ 42: {^23, 62},
+ 43: {^20, 63},
+ 44: {64, 65},
+ 45: {^19, 66},
+ 46: {67, ^26},
+ 47: {68, 69},
+ 48: {70, ^21},
+ 49: {^28, 71},
+ 50: {72, 73},
+ 51: {^27, 74},
+ 52: {75, ^18},
+ 53: {^24, 76},
+ 54: {77, ^25},
+ 55: {78, 79},
+ 56: {80, 81},
+ 57: {82, 83},
+ 58: {84, ^256},
+ 59: {0, 85},
+ 60: {^29, ^30},
+ 61: {^45, ^46},
+ 62: {^47, ^48},
+ 63: {^33, ^34},
+ 64: {^35, ^36},
+ 65: {^37, ^38},
+ 66: {^31, ^32},
+ 67: {^53, ^54},
+ 68: {^39, ^40},
+ 69: {^41, ^42},
+ 70: {^43, ^44},
+ 71: {^61, ^62},
+ 72: {^63, ^0},
+ 73: {^320, ^384},
+ 74: {^59, ^60},
+ 75: {86, 87},
+ 76: {^49, ^50},
+ 77: {^51, ^52},
+ 78: {^55, ^56},
+ 79: {^57, ^58},
+ 80: {^448, ^512},
+ 81: {88, ^640},
+ 82: {^576, 89},
+ 83: {90, 91},
+ 84: {92, 93},
+ 85: {94, 95},
+ 86: {^1472, ^1536},
+ 87: {^1600, ^1728},
+ 88: {^704, ^768},
+ 89: {^832, ^896},
+ 90: {^960, ^1024},
+ 91: {^1088, ^1152},
+ 92: {^1216, ^1280},
+ 93: {^1344, ^1408},
+ 94: {96, 97},
+ 95: {98, 99},
+ 96: {^1792, 100},
+ 97: {101, 102},
+ 98: {^1856, ^1920},
+ 99: {103, 104},
+ 100: {^1984, ^2048},
+ 101: {^2112, ^2176},
+ 102: {^2240, ^2304},
+ 103: {^2368, ^2432},
+ 104: {^2496, ^2560},
+}
+
+// blackDecodeTable represents Tables 2 and 3 for a black run.
+//
+// +=XXXXX
+// b017 +-+
+// | | +=v1792
+// b042 | | +-+
+// | | | | +=v1984
+// b063 | | | +-+
+// | | | +=v2048
+// b029 | | +-+
+// | | | | +=v2112
+// b064 | | | | +-+
+// | | | | | +=v2176
+// b043 | | | +-+
+// | | | | +=v2240
+// b065 | | | +-+
+// | | | +=v2304
+// b022 | +-+
+// | | +=v1856
+// b044 | | +-+
+// | | | +=v1920
+// b030 | +-+
+// | | +=v2368
+// b066 | | +-+
+// | | | +=v2432
+// b045 | +-+
+// | | +=v2496
+// b067 | +-+
+// | +=v2560
+// b013 +-+
+// | | +=v0018
+// b031 | | +-+
+// | | | | +=v0052
+// b068 | | | | +-+
+// | | | | | | +=v0640
+// b095 | | | | | +-+
+// | | | | | +=v0704
+// b046 | | | +-+
+// | | | | +=v0768
+// b096 | | | | +-+
+// | | | | | +=v0832
+// b069 | | | +-+
+// | | | +=v0055
+// b023 | | +-+
+// | | | | +=v0056
+// b070 | | | | +-+
+// | | | | | | +=v1280
+// b097 | | | | | +-+
+// | | | | | +=v1344
+// b047 | | | | +-+
+// | | | | | | +=v1408
+// b098 | | | | | | +-+
+// | | | | | | | +=v1472
+// b071 | | | | | +-+
+// | | | | | +=v0059
+// b032 | | | +-+
+// | | | | +=v0060
+// b072 | | | | +-+
+// | | | | | | +=v1536
+// b099 | | | | | +-+
+// | | | | | +=v1600
+// b048 | | | +-+
+// | | | +=v0024
+// b018 | +-+
+// | | +=v0025
+// b049 | | +-+
+// | | | | +=v1664
+// b100 | | | | +-+
+// | | | | | +=v1728
+// b073 | | | +-+
+// | | | +=v0320
+// b033 | | +-+
+// | | | | +=v0384
+// b074 | | | | +-+
+// | | | | | +=v0448
+// b050 | | | +-+
+// | | | | +=v0512
+// b101 | | | | +-+
+// | | | | | +=v0576
+// b075 | | | +-+
+// | | | +=v0053
+// b024 | +-+
+// | | +=v0054
+// b076 | | +-+
+// | | | | +=v0896
+// b102 | | | +-+
+// | | | +=v0960
+// b051 | | +-+
+// | | | | +=v1024
+// b103 | | | | +-+
+// | | | | | +=v1088
+// b077 | | | +-+
+// | | | | +=v1152
+// b104 | | | +-+
+// | | | +=v1216
+// b034 | +-+
+// | +=v0064
+// b010 +-+
+// | | +=v0013
+// b019 | | +-+
+// | | | | +=v0023
+// b052 | | | | +-+
+// | | | | | | +=v0050
+// b078 | | | | | +-+
+// | | | | | +=v0051
+// b035 | | | | +-+
+// | | | | | | +=v0044
+// b079 | | | | | | +-+
+// | | | | | | | +=v0045
+// b053 | | | | | +-+
+// | | | | | | +=v0046
+// b080 | | | | | +-+
+// | | | | | +=v0047
+// b025 | | | +-+
+// | | | | +=v0057
+// b081 | | | | +-+
+// | | | | | +=v0058
+// b054 | | | | +-+
+// | | | | | | +=v0061
+// b082 | | | | | +-+
+// | | | | | +=v0256
+// b036 | | | +-+
+// | | | +=v0016
+// b014 | +-+
+// | | +=v0017
+// b037 | | +-+
+// | | | | +=v0048
+// b083 | | | | +-+
+// | | | | | +=v0049
+// b055 | | | +-+
+// | | | | +=v0062
+// b084 | | | +-+
+// | | | +=v0063
+// b026 | | +-+
+// | | | | +=v0030
+// b085 | | | | +-+
+// | | | | | +=v0031
+// b056 | | | | +-+
+// | | | | | | +=v0032
+// b086 | | | | | +-+
+// | | | | | +=v0033
+// b038 | | | +-+
+// | | | | +=v0040
+// b087 | | | | +-+
+// | | | | | +=v0041
+// b057 | | | +-+
+// | | | +=v0022
+// b020 | +-+
+// | +=v0014
+// b008 +-+
+// | | +=v0010
+// b015 | | +-+
+// | | | +=v0011
+// b011 | +-+
+// | | +=v0015
+// b027 | | +-+
+// | | | | +=v0128
+// b088 | | | | +-+
+// | | | | | +=v0192
+// b058 | | | | +-+
+// | | | | | | +=v0026
+// b089 | | | | | +-+
+// | | | | | +=v0027
+// b039 | | | +-+
+// | | | | +=v0028
+// b090 | | | | +-+
+// | | | | | +=v0029
+// b059 | | | +-+
+// | | | +=v0019
+// b021 | | +-+
+// | | | | +=v0020
+// b060 | | | | +-+
+// | | | | | | +=v0034
+// b091 | | | | | +-+
+// | | | | | +=v0035
+// b040 | | | | +-+
+// | | | | | | +=v0036
+// b092 | | | | | | +-+
+// | | | | | | | +=v0037
+// b061 | | | | | +-+
+// | | | | | | +=v0038
+// b093 | | | | | +-+
+// | | | | | +=v0039
+// b028 | | | +-+
+// | | | | +=v0021
+// b062 | | | | +-+
+// | | | | | | +=v0042
+// b094 | | | | | +-+
+// | | | | | +=v0043
+// b041 | | | +-+
+// | | | +=v0000
+// b016 | +-+
+// | +=v0012
+// b006 +-+
+// | | +=v0009
+// b012 | | +-+
+// | | | +=v0008
+// b009 | +-+
+// | +=v0007
+// b004 +-+
+// | | +=v0006
+// b007 | +-+
+// | +=v0005
+// b002 +-+
+// | | +=v0001
+// b005 | +-+
+// | +=v0004
+// b001 +-+
+// | +=v0003
+// b003 +-+
+// +=v0002
+var blackDecodeTable = [...][2]int16{
+ 0: {0, 0},
+ 1: {2, 3},
+ 2: {4, 5},
+ 3: {^3, ^2},
+ 4: {6, 7},
+ 5: {^1, ^4},
+ 6: {8, 9},
+ 7: {^6, ^5},
+ 8: {10, 11},
+ 9: {12, ^7},
+ 10: {13, 14},
+ 11: {15, 16},
+ 12: {^9, ^8},
+ 13: {17, 18},
+ 14: {19, 20},
+ 15: {^10, ^11},
+ 16: {21, ^12},
+ 17: {0, 22},
+ 18: {23, 24},
+ 19: {^13, 25},
+ 20: {26, ^14},
+ 21: {27, 28},
+ 22: {29, 30},
+ 23: {31, 32},
+ 24: {33, 34},
+ 25: {35, 36},
+ 26: {37, 38},
+ 27: {^15, 39},
+ 28: {40, 41},
+ 29: {42, 43},
+ 30: {44, 45},
+ 31: {^18, 46},
+ 32: {47, 48},
+ 33: {49, 50},
+ 34: {51, ^64},
+ 35: {52, 53},
+ 36: {54, ^16},
+ 37: {^17, 55},
+ 38: {56, 57},
+ 39: {58, 59},
+ 40: {60, 61},
+ 41: {62, ^0},
+ 42: {^1792, 63},
+ 43: {64, 65},
+ 44: {^1856, ^1920},
+ 45: {66, 67},
+ 46: {68, 69},
+ 47: {70, 71},
+ 48: {72, ^24},
+ 49: {^25, 73},
+ 50: {74, 75},
+ 51: {76, 77},
+ 52: {^23, 78},
+ 53: {79, 80},
+ 54: {81, 82},
+ 55: {83, 84},
+ 56: {85, 86},
+ 57: {87, ^22},
+ 58: {88, 89},
+ 59: {90, ^19},
+ 60: {^20, 91},
+ 61: {92, 93},
+ 62: {^21, 94},
+ 63: {^1984, ^2048},
+ 64: {^2112, ^2176},
+ 65: {^2240, ^2304},
+ 66: {^2368, ^2432},
+ 67: {^2496, ^2560},
+ 68: {^52, 95},
+ 69: {96, ^55},
+ 70: {^56, 97},
+ 71: {98, ^59},
+ 72: {^60, 99},
+ 73: {100, ^320},
+ 74: {^384, ^448},
+ 75: {101, ^53},
+ 76: {^54, 102},
+ 77: {103, 104},
+ 78: {^50, ^51},
+ 79: {^44, ^45},
+ 80: {^46, ^47},
+ 81: {^57, ^58},
+ 82: {^61, ^256},
+ 83: {^48, ^49},
+ 84: {^62, ^63},
+ 85: {^30, ^31},
+ 86: {^32, ^33},
+ 87: {^40, ^41},
+ 88: {^128, ^192},
+ 89: {^26, ^27},
+ 90: {^28, ^29},
+ 91: {^34, ^35},
+ 92: {^36, ^37},
+ 93: {^38, ^39},
+ 94: {^42, ^43},
+ 95: {^640, ^704},
+ 96: {^768, ^832},
+ 97: {^1280, ^1344},
+ 98: {^1408, ^1472},
+ 99: {^1536, ^1600},
+ 100: {^1664, ^1728},
+ 101: {^512, ^576},
+ 102: {^896, ^960},
+ 103: {^1024, ^1088},
+ 104: {^1152, ^1216},
+}
+
+const maxCodeLength = 13
+
+// Each encodeTable is represented by an array of bitStrings.
+
+// bitString is a pair of uint32 values representing a bit code.
+// The nBits low bits of bits make up the actual bit code.
+// Eg. bitString{0x0004, 8} represents the bitcode "00000100".
+type bitString struct {
+ bits uint32
+ nBits uint32
+}
+
+// modeEncodeTable represents Table 1 and the End-of-Line code.
+var modeEncodeTable = [...]bitString{
+ 0: {0x0001, 4}, // "0001"
+ 1: {0x0001, 3}, // "001"
+ 2: {0x0001, 1}, // "1"
+ 3: {0x0003, 3}, // "011"
+ 4: {0x0003, 6}, // "000011"
+ 5: {0x0003, 7}, // "0000011"
+ 6: {0x0002, 3}, // "010"
+ 7: {0x0002, 6}, // "000010"
+ 8: {0x0002, 7}, // "0000010"
+ 9: {0x0001, 7}, // "0000001"
+}
+
+// whiteEncodeTable2 represents Table 2 for a white run.
+var whiteEncodeTable2 = [...]bitString{
+ 0: {0x0035, 8}, // "00110101"
+ 1: {0x0007, 6}, // "000111"
+ 2: {0x0007, 4}, // "0111"
+ 3: {0x0008, 4}, // "1000"
+ 4: {0x000b, 4}, // "1011"
+ 5: {0x000c, 4}, // "1100"
+ 6: {0x000e, 4}, // "1110"
+ 7: {0x000f, 4}, // "1111"
+ 8: {0x0013, 5}, // "10011"
+ 9: {0x0014, 5}, // "10100"
+ 10: {0x0007, 5}, // "00111"
+ 11: {0x0008, 5}, // "01000"
+ 12: {0x0008, 6}, // "001000"
+ 13: {0x0003, 6}, // "000011"
+ 14: {0x0034, 6}, // "110100"
+ 15: {0x0035, 6}, // "110101"
+ 16: {0x002a, 6}, // "101010"
+ 17: {0x002b, 6}, // "101011"
+ 18: {0x0027, 7}, // "0100111"
+ 19: {0x000c, 7}, // "0001100"
+ 20: {0x0008, 7}, // "0001000"
+ 21: {0x0017, 7}, // "0010111"
+ 22: {0x0003, 7}, // "0000011"
+ 23: {0x0004, 7}, // "0000100"
+ 24: {0x0028, 7}, // "0101000"
+ 25: {0x002b, 7}, // "0101011"
+ 26: {0x0013, 7}, // "0010011"
+ 27: {0x0024, 7}, // "0100100"
+ 28: {0x0018, 7}, // "0011000"
+ 29: {0x0002, 8}, // "00000010"
+ 30: {0x0003, 8}, // "00000011"
+ 31: {0x001a, 8}, // "00011010"
+ 32: {0x001b, 8}, // "00011011"
+ 33: {0x0012, 8}, // "00010010"
+ 34: {0x0013, 8}, // "00010011"
+ 35: {0x0014, 8}, // "00010100"
+ 36: {0x0015, 8}, // "00010101"
+ 37: {0x0016, 8}, // "00010110"
+ 38: {0x0017, 8}, // "00010111"
+ 39: {0x0028, 8}, // "00101000"
+ 40: {0x0029, 8}, // "00101001"
+ 41: {0x002a, 8}, // "00101010"
+ 42: {0x002b, 8}, // "00101011"
+ 43: {0x002c, 8}, // "00101100"
+ 44: {0x002d, 8}, // "00101101"
+ 45: {0x0004, 8}, // "00000100"
+ 46: {0x0005, 8}, // "00000101"
+ 47: {0x000a, 8}, // "00001010"
+ 48: {0x000b, 8}, // "00001011"
+ 49: {0x0052, 8}, // "01010010"
+ 50: {0x0053, 8}, // "01010011"
+ 51: {0x0054, 8}, // "01010100"
+ 52: {0x0055, 8}, // "01010101"
+ 53: {0x0024, 8}, // "00100100"
+ 54: {0x0025, 8}, // "00100101"
+ 55: {0x0058, 8}, // "01011000"
+ 56: {0x0059, 8}, // "01011001"
+ 57: {0x005a, 8}, // "01011010"
+ 58: {0x005b, 8}, // "01011011"
+ 59: {0x004a, 8}, // "01001010"
+ 60: {0x004b, 8}, // "01001011"
+ 61: {0x0032, 8}, // "00110010"
+ 62: {0x0033, 8}, // "00110011"
+ 63: {0x0034, 8}, // "00110100"
+}
+
+// whiteEncodeTable3 represents Table 3 for a white run.
+var whiteEncodeTable3 = [...]bitString{
+ 0: {0x001b, 5}, // "11011"
+ 1: {0x0012, 5}, // "10010"
+ 2: {0x0017, 6}, // "010111"
+ 3: {0x0037, 7}, // "0110111"
+ 4: {0x0036, 8}, // "00110110"
+ 5: {0x0037, 8}, // "00110111"
+ 6: {0x0064, 8}, // "01100100"
+ 7: {0x0065, 8}, // "01100101"
+ 8: {0x0068, 8}, // "01101000"
+ 9: {0x0067, 8}, // "01100111"
+ 10: {0x00cc, 9}, // "011001100"
+ 11: {0x00cd, 9}, // "011001101"
+ 12: {0x00d2, 9}, // "011010010"
+ 13: {0x00d3, 9}, // "011010011"
+ 14: {0x00d4, 9}, // "011010100"
+ 15: {0x00d5, 9}, // "011010101"
+ 16: {0x00d6, 9}, // "011010110"
+ 17: {0x00d7, 9}, // "011010111"
+ 18: {0x00d8, 9}, // "011011000"
+ 19: {0x00d9, 9}, // "011011001"
+ 20: {0x00da, 9}, // "011011010"
+ 21: {0x00db, 9}, // "011011011"
+ 22: {0x0098, 9}, // "010011000"
+ 23: {0x0099, 9}, // "010011001"
+ 24: {0x009a, 9}, // "010011010"
+ 25: {0x0018, 6}, // "011000"
+ 26: {0x009b, 9}, // "010011011"
+ 27: {0x0008, 11}, // "00000001000"
+ 28: {0x000c, 11}, // "00000001100"
+ 29: {0x000d, 11}, // "00000001101"
+ 30: {0x0012, 12}, // "000000010010"
+ 31: {0x0013, 12}, // "000000010011"
+ 32: {0x0014, 12}, // "000000010100"
+ 33: {0x0015, 12}, // "000000010101"
+ 34: {0x0016, 12}, // "000000010110"
+ 35: {0x0017, 12}, // "000000010111"
+ 36: {0x001c, 12}, // "000000011100"
+ 37: {0x001d, 12}, // "000000011101"
+ 38: {0x001e, 12}, // "000000011110"
+ 39: {0x001f, 12}, // "000000011111"
+}
+
+// blackEncodeTable2 represents Table 2 for a black run.
+var blackEncodeTable2 = [...]bitString{
+ 0: {0x0037, 10}, // "0000110111"
+ 1: {0x0002, 3}, // "010"
+ 2: {0x0003, 2}, // "11"
+ 3: {0x0002, 2}, // "10"
+ 4: {0x0003, 3}, // "011"
+ 5: {0x0003, 4}, // "0011"
+ 6: {0x0002, 4}, // "0010"
+ 7: {0x0003, 5}, // "00011"
+ 8: {0x0005, 6}, // "000101"
+ 9: {0x0004, 6}, // "000100"
+ 10: {0x0004, 7}, // "0000100"
+ 11: {0x0005, 7}, // "0000101"
+ 12: {0x0007, 7}, // "0000111"
+ 13: {0x0004, 8}, // "00000100"
+ 14: {0x0007, 8}, // "00000111"
+ 15: {0x0018, 9}, // "000011000"
+ 16: {0x0017, 10}, // "0000010111"
+ 17: {0x0018, 10}, // "0000011000"
+ 18: {0x0008, 10}, // "0000001000"
+ 19: {0x0067, 11}, // "00001100111"
+ 20: {0x0068, 11}, // "00001101000"
+ 21: {0x006c, 11}, // "00001101100"
+ 22: {0x0037, 11}, // "00000110111"
+ 23: {0x0028, 11}, // "00000101000"
+ 24: {0x0017, 11}, // "00000010111"
+ 25: {0x0018, 11}, // "00000011000"
+ 26: {0x00ca, 12}, // "000011001010"
+ 27: {0x00cb, 12}, // "000011001011"
+ 28: {0x00cc, 12}, // "000011001100"
+ 29: {0x00cd, 12}, // "000011001101"
+ 30: {0x0068, 12}, // "000001101000"
+ 31: {0x0069, 12}, // "000001101001"
+ 32: {0x006a, 12}, // "000001101010"
+ 33: {0x006b, 12}, // "000001101011"
+ 34: {0x00d2, 12}, // "000011010010"
+ 35: {0x00d3, 12}, // "000011010011"
+ 36: {0x00d4, 12}, // "000011010100"
+ 37: {0x00d5, 12}, // "000011010101"
+ 38: {0x00d6, 12}, // "000011010110"
+ 39: {0x00d7, 12}, // "000011010111"
+ 40: {0x006c, 12}, // "000001101100"
+ 41: {0x006d, 12}, // "000001101101"
+ 42: {0x00da, 12}, // "000011011010"
+ 43: {0x00db, 12}, // "000011011011"
+ 44: {0x0054, 12}, // "000001010100"
+ 45: {0x0055, 12}, // "000001010101"
+ 46: {0x0056, 12}, // "000001010110"
+ 47: {0x0057, 12}, // "000001010111"
+ 48: {0x0064, 12}, // "000001100100"
+ 49: {0x0065, 12}, // "000001100101"
+ 50: {0x0052, 12}, // "000001010010"
+ 51: {0x0053, 12}, // "000001010011"
+ 52: {0x0024, 12}, // "000000100100"
+ 53: {0x0037, 12}, // "000000110111"
+ 54: {0x0038, 12}, // "000000111000"
+ 55: {0x0027, 12}, // "000000100111"
+ 56: {0x0028, 12}, // "000000101000"
+ 57: {0x0058, 12}, // "000001011000"
+ 58: {0x0059, 12}, // "000001011001"
+ 59: {0x002b, 12}, // "000000101011"
+ 60: {0x002c, 12}, // "000000101100"
+ 61: {0x005a, 12}, // "000001011010"
+ 62: {0x0066, 12}, // "000001100110"
+ 63: {0x0067, 12}, // "000001100111"
+}
+
+// blackEncodeTable3 represents Table 3 for a black run.
+var blackEncodeTable3 = [...]bitString{
+ 0: {0x000f, 10}, // "0000001111"
+ 1: {0x00c8, 12}, // "000011001000"
+ 2: {0x00c9, 12}, // "000011001001"
+ 3: {0x005b, 12}, // "000001011011"
+ 4: {0x0033, 12}, // "000000110011"
+ 5: {0x0034, 12}, // "000000110100"
+ 6: {0x0035, 12}, // "000000110101"
+ 7: {0x006c, 13}, // "0000001101100"
+ 8: {0x006d, 13}, // "0000001101101"
+ 9: {0x004a, 13}, // "0000001001010"
+ 10: {0x004b, 13}, // "0000001001011"
+ 11: {0x004c, 13}, // "0000001001100"
+ 12: {0x004d, 13}, // "0000001001101"
+ 13: {0x0072, 13}, // "0000001110010"
+ 14: {0x0073, 13}, // "0000001110011"
+ 15: {0x0074, 13}, // "0000001110100"
+ 16: {0x0075, 13}, // "0000001110101"
+ 17: {0x0076, 13}, // "0000001110110"
+ 18: {0x0077, 13}, // "0000001110111"
+ 19: {0x0052, 13}, // "0000001010010"
+ 20: {0x0053, 13}, // "0000001010011"
+ 21: {0x0054, 13}, // "0000001010100"
+ 22: {0x0055, 13}, // "0000001010101"
+ 23: {0x005a, 13}, // "0000001011010"
+ 24: {0x005b, 13}, // "0000001011011"
+ 25: {0x0064, 13}, // "0000001100100"
+ 26: {0x0065, 13}, // "0000001100101"
+ 27: {0x0008, 11}, // "00000001000"
+ 28: {0x000c, 11}, // "00000001100"
+ 29: {0x000d, 11}, // "00000001101"
+ 30: {0x0012, 12}, // "000000010010"
+ 31: {0x0013, 12}, // "000000010011"
+ 32: {0x0014, 12}, // "000000010100"
+ 33: {0x0015, 12}, // "000000010101"
+ 34: {0x0016, 12}, // "000000010110"
+ 35: {0x0017, 12}, // "000000010111"
+ 36: {0x001c, 12}, // "000000011100"
+ 37: {0x001d, 12}, // "000000011101"
+ 38: {0x001e, 12}, // "000000011110"
+ 39: {0x001f, 12}, // "000000011111"
+}
+
+// COPY PASTE table.go BEGIN
+
+const (
+ modePass = iota // Pass
+ modeH // Horizontal
+ modeV0 // Vertical-0
+ modeVR1 // Vertical-Right-1
+ modeVR2 // Vertical-Right-2
+ modeVR3 // Vertical-Right-3
+ modeVL1 // Vertical-Left-1
+ modeVL2 // Vertical-Left-2
+ modeVL3 // Vertical-Left-3
+ modeExt // Extension
+)
+
+// COPY PASTE table.go END
diff --git a/vendor/golang.org/x/image/ccitt/writer.go b/vendor/golang.org/x/image/ccitt/writer.go
new file mode 100644
index 00000000..87130ab0
--- /dev/null
+++ b/vendor/golang.org/x/image/ccitt/writer.go
@@ -0,0 +1,102 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ccitt
+
+import (
+ "encoding/binary"
+ "io"
+)
+
+type bitWriter struct {
+ w io.Writer
+
+ // order is whether to process w's bytes LSB first or MSB first.
+ order Order
+
+ // The high nBits bits of the bits field hold encoded bits to be written to w.
+ bits uint64
+ nBits uint32
+
+ // bytes[:bw] holds encoded bytes not yet written to w.
+ // Overflow protection is ensured by using a multiple of 8 as bytes length.
+ bw uint32
+ bytes [1024]uint8
+}
+
+// flushBits copies 64 bits from b.bits to b.bytes. If b.bytes is then full, it
+// is written to b.w.
+func (b *bitWriter) flushBits() error {
+ binary.BigEndian.PutUint64(b.bytes[b.bw:], b.bits)
+ b.bits = 0
+ b.nBits = 0
+ b.bw += 8
+ if b.bw < uint32(len(b.bytes)) {
+ return nil
+ }
+ b.bw = 0
+ if b.order != MSB {
+ reverseBitsWithinBytes(b.bytes[:])
+ }
+ _, err := b.w.Write(b.bytes[:])
+ return err
+}
+
+// close finalizes a bitcode stream by writing any
+// pending bits to bitWriter's underlying io.Writer.
+func (b *bitWriter) close() error {
+ // Write any encoded bits to bytes.
+ if b.nBits > 0 {
+ binary.BigEndian.PutUint64(b.bytes[b.bw:], b.bits)
+ b.bw += (b.nBits + 7) >> 3
+ }
+
+ if b.order != MSB {
+ reverseBitsWithinBytes(b.bytes[:b.bw])
+ }
+
+ // Write b.bw bytes to b.w.
+ _, err := b.w.Write(b.bytes[:b.bw])
+ return err
+}
+
+// alignToByteBoundary rounds b.nBits up to a multiple of 8.
+// If all 64 bits are used, flush them to bitWriter's bytes.
+func (b *bitWriter) alignToByteBoundary() error {
+ if b.nBits = (b.nBits + 7) &^ 7; b.nBits == 64 {
+ return b.flushBits()
+ }
+ return nil
+}
+
+// writeCode writes a variable length bitcode to b's underlying io.Writer.
+func (b *bitWriter) writeCode(bs bitString) error {
+ bits := bs.bits
+ nBits := bs.nBits
+ if 64-b.nBits >= nBits {
+ // b.bits has sufficient room for storing nBits bits.
+ b.bits |= uint64(bits) << (64 - nBits - b.nBits)
+ b.nBits += nBits
+ if b.nBits == 64 {
+ return b.flushBits()
+ }
+ return nil
+ }
+
+ // Number of leading bits that fill b.bits.
+ i := 64 - b.nBits
+
+ // Fill b.bits then flush and write remaining bits.
+ b.bits |= uint64(bits) >> (nBits - i)
+ b.nBits = 64
+
+ if err := b.flushBits(); err != nil {
+ return err
+ }
+
+ nBits -= i
+ b.bits = uint64(bits) << (64 - nBits)
+ b.nBits = nBits
+ return nil
+}
diff --git a/vendor/golang.org/x/image/tiff/buffer.go b/vendor/golang.org/x/image/tiff/buffer.go
new file mode 100644
index 00000000..d1801be4
--- /dev/null
+++ b/vendor/golang.org/x/image/tiff/buffer.go
@@ -0,0 +1,69 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tiff
+
+import "io"
+
+// buffer buffers an io.Reader to satisfy io.ReaderAt.
+type buffer struct {
+ r io.Reader
+ buf []byte
+}
+
+// fill reads data from b.r until the buffer contains at least end bytes.
+func (b *buffer) fill(end int) error {
+ m := len(b.buf)
+ if end > m {
+ if end > cap(b.buf) {
+ newcap := 1024
+ for newcap < end {
+ newcap *= 2
+ }
+ newbuf := make([]byte, end, newcap)
+ copy(newbuf, b.buf)
+ b.buf = newbuf
+ } else {
+ b.buf = b.buf[:end]
+ }
+ if n, err := io.ReadFull(b.r, b.buf[m:end]); err != nil {
+ end = m + n
+ b.buf = b.buf[:end]
+ return err
+ }
+ }
+ return nil
+}
+
+func (b *buffer) ReadAt(p []byte, off int64) (int, error) {
+ o := int(off)
+ end := o + len(p)
+ if int64(end) != off+int64(len(p)) {
+ return 0, io.ErrUnexpectedEOF
+ }
+
+ err := b.fill(end)
+ return copy(p, b.buf[o:end]), err
+}
+
+// Slice returns a slice of the underlying buffer. The slice contains
+// n bytes starting at offset off.
+func (b *buffer) Slice(off, n int) ([]byte, error) {
+ end := off + n
+ if err := b.fill(end); err != nil {
+ return nil, err
+ }
+ return b.buf[off:end], nil
+}
+
+// newReaderAt converts an io.Reader into an io.ReaderAt.
+func newReaderAt(r io.Reader) io.ReaderAt {
+ if ra, ok := r.(io.ReaderAt); ok {
+ return ra
+ }
+ return &buffer{
+ r: r,
+ buf: make([]byte, 0, 1024),
+ }
+}
diff --git a/vendor/golang.org/x/image/tiff/compress.go b/vendor/golang.org/x/image/tiff/compress.go
new file mode 100644
index 00000000..3f176f00
--- /dev/null
+++ b/vendor/golang.org/x/image/tiff/compress.go
@@ -0,0 +1,58 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tiff
+
+import (
+ "bufio"
+ "io"
+)
+
+type byteReader interface {
+ io.Reader
+ io.ByteReader
+}
+
+// unpackBits decodes the PackBits-compressed data in src and returns the
+// uncompressed data.
+//
+// The PackBits compression format is described in section 9 (p. 42)
+// of the TIFF spec.
+func unpackBits(r io.Reader) ([]byte, error) {
+ buf := make([]byte, 128)
+ dst := make([]byte, 0, 1024)
+ br, ok := r.(byteReader)
+ if !ok {
+ br = bufio.NewReader(r)
+ }
+
+ for {
+ b, err := br.ReadByte()
+ if err != nil {
+ if err == io.EOF {
+ return dst, nil
+ }
+ return nil, err
+ }
+ code := int(int8(b))
+ switch {
+ case code >= 0:
+ n, err := io.ReadFull(br, buf[:code+1])
+ if err != nil {
+ return nil, err
+ }
+ dst = append(dst, buf[:n]...)
+ case code == -128:
+ // No-op.
+ default:
+ if b, err = br.ReadByte(); err != nil {
+ return nil, err
+ }
+ for j := 0; j < 1-code; j++ {
+ buf[j] = b
+ }
+ dst = append(dst, buf[:1-code]...)
+ }
+ }
+}
diff --git a/vendor/golang.org/x/image/tiff/consts.go b/vendor/golang.org/x/image/tiff/consts.go
new file mode 100644
index 00000000..3e5f7f14
--- /dev/null
+++ b/vendor/golang.org/x/image/tiff/consts.go
@@ -0,0 +1,149 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tiff
+
+// A tiff image file contains one or more images. The metadata
+// of each image is contained in an Image File Directory (IFD),
+// which contains entries of 12 bytes each and is described
+// on page 14-16 of the specification. An IFD entry consists of
+//
+// - a tag, which describes the signification of the entry,
+// - the data type and length of the entry,
+// - the data itself or a pointer to it if it is more than 4 bytes.
+//
+// The presence of a length means that each IFD is effectively an array.
+
+const (
+ leHeader = "II\x2A\x00" // Header for little-endian files.
+ beHeader = "MM\x00\x2A" // Header for big-endian files.
+
+ ifdLen = 12 // Length of an IFD entry in bytes.
+)
+
+// Data types (p. 14-16 of the spec).
+const (
+ dtByte = 1
+ dtASCII = 2
+ dtShort = 3
+ dtLong = 4
+ dtRational = 5
+)
+
+// The length of one instance of each data type in bytes.
+var lengths = [...]uint32{0, 1, 1, 2, 4, 8}
+
+// Tags (see p. 28-41 of the spec).
+const (
+ tImageWidth = 256
+ tImageLength = 257
+ tBitsPerSample = 258
+ tCompression = 259
+ tPhotometricInterpretation = 262
+
+ tFillOrder = 266
+
+ tStripOffsets = 273
+ tSamplesPerPixel = 277
+ tRowsPerStrip = 278
+ tStripByteCounts = 279
+
+ tT4Options = 292 // CCITT Group 3 options, a set of 32 flag bits.
+ tT6Options = 293 // CCITT Group 4 options, a set of 32 flag bits.
+
+ tTileWidth = 322
+ tTileLength = 323
+ tTileOffsets = 324
+ tTileByteCounts = 325
+
+ tXResolution = 282
+ tYResolution = 283
+ tResolutionUnit = 296
+
+ tPredictor = 317
+ tColorMap = 320
+ tExtraSamples = 338
+ tSampleFormat = 339
+)
+
+// Compression types (defined in various places in the spec and supplements).
+const (
+ cNone = 1
+ cCCITT = 2
+ cG3 = 3 // Group 3 Fax.
+ cG4 = 4 // Group 4 Fax.
+ cLZW = 5
+ cJPEGOld = 6 // Superseded by cJPEG.
+ cJPEG = 7
+ cDeflate = 8 // zlib compression.
+ cPackBits = 32773
+ cDeflateOld = 32946 // Superseded by cDeflate.
+)
+
+// Photometric interpretation values (see p. 37 of the spec).
+const (
+ pWhiteIsZero = 0
+ pBlackIsZero = 1
+ pRGB = 2
+ pPaletted = 3
+ pTransMask = 4 // transparency mask
+ pCMYK = 5
+ pYCbCr = 6
+ pCIELab = 8
+)
+
+// Values for the tPredictor tag (page 64-65 of the spec).
+const (
+ prNone = 1
+ prHorizontal = 2
+)
+
+// Values for the tResolutionUnit tag (page 18).
+const (
+ resNone = 1
+ resPerInch = 2 // Dots per inch.
+ resPerCM = 3 // Dots per centimeter.
+)
+
+// imageMode represents the mode of the image.
+type imageMode int
+
+const (
+ mBilevel imageMode = iota
+ mPaletted
+ mGray
+ mGrayInvert
+ mRGB
+ mRGBA
+ mNRGBA
+ mCMYK
+)
+
+// CompressionType describes the type of compression used in Options.
+type CompressionType int
+
+// Constants for supported compression types.
+const (
+ Uncompressed CompressionType = iota
+ Deflate
+ LZW
+ CCITTGroup3
+ CCITTGroup4
+)
+
+// specValue returns the compression type constant from the TIFF spec that
+// is equivalent to c.
+func (c CompressionType) specValue() uint32 {
+ switch c {
+ case LZW:
+ return cLZW
+ case Deflate:
+ return cDeflate
+ case CCITTGroup3:
+ return cG3
+ case CCITTGroup4:
+ return cG4
+ }
+ return cNone
+}
diff --git a/vendor/golang.org/x/image/tiff/fuzz.go b/vendor/golang.org/x/image/tiff/fuzz.go
new file mode 100644
index 00000000..ec52c788
--- /dev/null
+++ b/vendor/golang.org/x/image/tiff/fuzz.go
@@ -0,0 +1,29 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build gofuzz
+
+package tiff
+
+import "bytes"
+
+func Fuzz(data []byte) int {
+ cfg, err := DecodeConfig(bytes.NewReader(data))
+ if err != nil {
+ return 0
+ }
+ if cfg.Width*cfg.Height > 1e6 {
+ return 0
+ }
+ img, err := Decode(bytes.NewReader(data))
+ if err != nil {
+ return 0
+ }
+ var w bytes.Buffer
+ err = Encode(&w, img, nil)
+ if err != nil {
+ panic(err)
+ }
+ return 1
+}
diff --git a/vendor/golang.org/x/image/tiff/lzw/reader.go b/vendor/golang.org/x/image/tiff/lzw/reader.go
new file mode 100644
index 00000000..78204ba9
--- /dev/null
+++ b/vendor/golang.org/x/image/tiff/lzw/reader.go
@@ -0,0 +1,272 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package lzw implements the Lempel-Ziv-Welch compressed data format,
+// described in T. A. Welch, ``A Technique for High-Performance Data
+// Compression'', Computer, 17(6) (June 1984), pp 8-19.
+//
+// In particular, it implements LZW as used by the TIFF file format, including
+// an "off by one" algorithmic difference when compared to standard LZW.
+package lzw // import "golang.org/x/image/tiff/lzw"
+
+/*
+This file was branched from src/pkg/compress/lzw/reader.go in the
+standard library. Differences from the original are marked with "NOTE".
+
+The tif_lzw.c file in the libtiff C library has this comment:
+
+----
+The 5.0 spec describes a different algorithm than Aldus
+implements. Specifically, Aldus does code length transitions
+one code earlier than should be done (for real LZW).
+Earlier versions of this library implemented the correct
+LZW algorithm, but emitted codes in a bit order opposite
+to the TIFF spec. Thus, to maintain compatibility w/ Aldus
+we interpret MSB-LSB ordered codes to be images written w/
+old versions of this library, but otherwise adhere to the
+Aldus "off by one" algorithm.
+----
+
+The Go code doesn't read (invalid) TIFF files written by old versions of
+libtiff, but the LZW algorithm in this package still differs from the one in
+Go's standard package library to accomodate this "off by one" in valid TIFFs.
+*/
+
+import (
+ "bufio"
+ "errors"
+ "fmt"
+ "io"
+)
+
+// Order specifies the bit ordering in an LZW data stream.
+type Order int
+
+const (
+ // LSB means Least Significant Bits first, as used in the GIF file format.
+ LSB Order = iota
+ // MSB means Most Significant Bits first, as used in the TIFF and PDF
+ // file formats.
+ MSB
+)
+
+const (
+ maxWidth = 12
+ decoderInvalidCode = 0xffff
+ flushBuffer = 1 << maxWidth
+)
+
+// decoder is the state from which the readXxx method converts a byte
+// stream into a code stream.
+type decoder struct {
+ r io.ByteReader
+ bits uint32
+ nBits uint
+ width uint
+ read func(*decoder) (uint16, error) // readLSB or readMSB
+ litWidth int // width in bits of literal codes
+ err error
+
+ // The first 1<<litWidth codes are literal codes.
+ // The next two codes mean clear and EOF.
+ // Other valid codes are in the range [lo, hi] where lo := clear + 2,
+ // with the upper bound incrementing on each code seen.
+ // overflow is the code at which hi overflows the code width. NOTE: TIFF's LZW is "off by one".
+ // last is the most recently seen code, or decoderInvalidCode.
+ clear, eof, hi, overflow, last uint16
+
+ // Each code c in [lo, hi] expands to two or more bytes. For c != hi:
+ // suffix[c] is the last of these bytes.
+ // prefix[c] is the code for all but the last byte.
+ // This code can either be a literal code or another code in [lo, c).
+ // The c == hi case is a special case.
+ suffix [1 << maxWidth]uint8
+ prefix [1 << maxWidth]uint16
+
+ // output is the temporary output buffer.
+ // Literal codes are accumulated from the start of the buffer.
+ // Non-literal codes decode to a sequence of suffixes that are first
+ // written right-to-left from the end of the buffer before being copied
+ // to the start of the buffer.
+ // It is flushed when it contains >= 1<<maxWidth bytes,
+ // so that there is always room to decode an entire code.
+ output [2 * 1 << maxWidth]byte
+ o int // write index into output
+ toRead []byte // bytes to return from Read
+}
+
+// readLSB returns the next code for "Least Significant Bits first" data.
+func (d *decoder) readLSB() (uint16, error) {
+ for d.nBits < d.width {
+ x, err := d.r.ReadByte()
+ if err != nil {
+ return 0, err
+ }
+ d.bits |= uint32(x) << d.nBits
+ d.nBits += 8
+ }
+ code := uint16(d.bits & (1<<d.width - 1))
+ d.bits >>= d.width
+ d.nBits -= d.width
+ return code, nil
+}
+
+// readMSB returns the next code for "Most Significant Bits first" data.
+func (d *decoder) readMSB() (uint16, error) {
+ for d.nBits < d.width {
+ x, err := d.r.ReadByte()
+ if err != nil {
+ return 0, err
+ }
+ d.bits |= uint32(x) << (24 - d.nBits)
+ d.nBits += 8
+ }
+ code := uint16(d.bits >> (32 - d.width))
+ d.bits <<= d.width
+ d.nBits -= d.width
+ return code, nil
+}
+
+func (d *decoder) Read(b []byte) (int, error) {
+ for {
+ if len(d.toRead) > 0 {
+ n := copy(b, d.toRead)
+ d.toRead = d.toRead[n:]
+ return n, nil
+ }
+ if d.err != nil {
+ return 0, d.err
+ }
+ d.decode()
+ }
+}
+
+// decode decompresses bytes from r and leaves them in d.toRead.
+// read specifies how to decode bytes into codes.
+// litWidth is the width in bits of literal codes.
+func (d *decoder) decode() {
+ // Loop over the code stream, converting codes into decompressed bytes.
+loop:
+ for {
+ code, err := d.read(d)
+ if err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ d.err = err
+ break
+ }
+ switch {
+ case code < d.clear:
+ // We have a literal code.
+ d.output[d.o] = uint8(code)
+ d.o++
+ if d.last != decoderInvalidCode {
+ // Save what the hi code expands to.
+ d.suffix[d.hi] = uint8(code)
+ d.prefix[d.hi] = d.last
+ }
+ case code == d.clear:
+ d.width = 1 + uint(d.litWidth)
+ d.hi = d.eof
+ d.overflow = 1 << d.width
+ d.last = decoderInvalidCode
+ continue
+ case code == d.eof:
+ d.err = io.EOF
+ break loop
+ case code <= d.hi:
+ c, i := code, len(d.output)-1
+ if code == d.hi && d.last != decoderInvalidCode {
+ // code == hi is a special case which expands to the last expansion
+ // followed by the head of the last expansion. To find the head, we walk
+ // the prefix chain until we find a literal code.
+ c = d.last
+ for c >= d.clear {
+ c = d.prefix[c]
+ }
+ d.output[i] = uint8(c)
+ i--
+ c = d.last
+ }
+ // Copy the suffix chain into output and then write that to w.
+ for c >= d.clear {
+ d.output[i] = d.suffix[c]
+ i--
+ c = d.prefix[c]
+ }
+ d.output[i] = uint8(c)
+ d.o += copy(d.output[d.o:], d.output[i:])
+ if d.last != decoderInvalidCode {
+ // Save what the hi code expands to.
+ d.suffix[d.hi] = uint8(c)
+ d.prefix[d.hi] = d.last
+ }
+ default:
+ d.err = errors.New("lzw: invalid code")
+ break loop
+ }
+ d.last, d.hi = code, d.hi+1
+ if d.hi+1 >= d.overflow { // NOTE: the "+1" is where TIFF's LZW differs from the standard algorithm.
+ if d.width == maxWidth {
+ d.last = decoderInvalidCode
+ } else {
+ d.width++
+ d.overflow <<= 1
+ }
+ }
+ if d.o >= flushBuffer {
+ break
+ }
+ }
+ // Flush pending output.
+ d.toRead = d.output[:d.o]
+ d.o = 0
+}
+
+var errClosed = errors.New("lzw: reader/writer is closed")
+
+func (d *decoder) Close() error {
+ d.err = errClosed // in case any Reads come along
+ return nil
+}
+
+// NewReader creates a new io.ReadCloser.
+// Reads from the returned io.ReadCloser read and decompress data from r.
+// If r does not also implement io.ByteReader,
+// the decompressor may read more data than necessary from r.
+// It is the caller's responsibility to call Close on the ReadCloser when
+// finished reading.
+// The number of bits to use for literal codes, litWidth, must be in the
+// range [2,8] and is typically 8. It must equal the litWidth
+// used during compression.
+func NewReader(r io.Reader, order Order, litWidth int) io.ReadCloser {
+ d := new(decoder)
+ switch order {
+ case LSB:
+ d.read = (*decoder).readLSB
+ case MSB:
+ d.read = (*decoder).readMSB
+ default:
+ d.err = errors.New("lzw: unknown order")
+ return d
+ }
+ if litWidth < 2 || 8 < litWidth {
+ d.err = fmt.Errorf("lzw: litWidth %d out of range", litWidth)
+ return d
+ }
+ if br, ok := r.(io.ByteReader); ok {
+ d.r = br
+ } else {
+ d.r = bufio.NewReader(r)
+ }
+ d.litWidth = litWidth
+ d.width = 1 + uint(litWidth)
+ d.clear = uint16(1) << uint(litWidth)
+ d.eof, d.hi = d.clear+1, d.clear+1
+ d.overflow = uint16(1) << d.width
+ d.last = decoderInvalidCode
+
+ return d
+}
diff --git a/vendor/golang.org/x/image/tiff/reader.go b/vendor/golang.org/x/image/tiff/reader.go
new file mode 100644
index 00000000..de73f4b9
--- /dev/null
+++ b/vendor/golang.org/x/image/tiff/reader.go
@@ -0,0 +1,709 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package tiff implements a TIFF image decoder and encoder.
+//
+// The TIFF specification is at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
+package tiff // import "golang.org/x/image/tiff"
+
+import (
+ "compress/zlib"
+ "encoding/binary"
+ "fmt"
+ "image"
+ "image/color"
+ "io"
+ "io/ioutil"
+ "math"
+
+ "golang.org/x/image/ccitt"
+ "golang.org/x/image/tiff/lzw"
+)
+
+// A FormatError reports that the input is not a valid TIFF image.
+type FormatError string
+
+func (e FormatError) Error() string {
+ return "tiff: invalid format: " + string(e)
+}
+
+// An UnsupportedError reports that the input uses a valid but
+// unimplemented feature.
+type UnsupportedError string
+
+func (e UnsupportedError) Error() string {
+ return "tiff: unsupported feature: " + string(e)
+}
+
+var errNoPixels = FormatError("not enough pixel data")
+
+type decoder struct {
+ r io.ReaderAt
+ byteOrder binary.ByteOrder
+ config image.Config
+ mode imageMode
+ bpp uint
+ features map[int][]uint
+ palette []color.Color
+
+ buf []byte
+ off int // Current offset in buf.
+ v uint32 // Buffer value for reading with arbitrary bit depths.
+ nbits uint // Remaining number of bits in v.
+}
+
+// firstVal returns the first uint of the features entry with the given tag,
+// or 0 if the tag does not exist.
+func (d *decoder) firstVal(tag int) uint {
+ f := d.features[tag]
+ if len(f) == 0 {
+ return 0
+ }
+ return f[0]
+}
+
+// ifdUint decodes the IFD entry in p, which must be of the Byte, Short
+// or Long type, and returns the decoded uint values.
+func (d *decoder) ifdUint(p []byte) (u []uint, err error) {
+ var raw []byte
+ if len(p) < ifdLen {
+ return nil, FormatError("bad IFD entry")
+ }
+
+ datatype := d.byteOrder.Uint16(p[2:4])
+ if dt := int(datatype); dt <= 0 || dt >= len(lengths) {
+ return nil, UnsupportedError("IFD entry datatype")
+ }
+
+ count := d.byteOrder.Uint32(p[4:8])
+ if count > math.MaxInt32/lengths[datatype] {
+ return nil, FormatError("IFD data too large")
+ }
+ if datalen := lengths[datatype] * count; datalen > 4 {
+ // The IFD contains a pointer to the real value.
+ raw = make([]byte, datalen)
+ _, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12])))
+ } else {
+ raw = p[8 : 8+datalen]
+ }
+ if err != nil {
+ return nil, err
+ }
+
+ u = make([]uint, count)
+ switch datatype {
+ case dtByte:
+ for i := uint32(0); i < count; i++ {
+ u[i] = uint(raw[i])
+ }
+ case dtShort:
+ for i := uint32(0); i < count; i++ {
+ u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)]))
+ }
+ case dtLong:
+ for i := uint32(0); i < count; i++ {
+ u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)]))
+ }
+ default:
+ return nil, UnsupportedError("data type")
+ }
+ return u, nil
+}
+
+// parseIFD decides whether the IFD entry in p is "interesting" and
+// stows away the data in the decoder. It returns the tag number of the
+// entry and an error, if any.
+func (d *decoder) parseIFD(p []byte) (int, error) {
+ tag := d.byteOrder.Uint16(p[0:2])
+ switch tag {
+ case tBitsPerSample,
+ tExtraSamples,
+ tPhotometricInterpretation,
+ tCompression,
+ tPredictor,
+ tStripOffsets,
+ tStripByteCounts,
+ tRowsPerStrip,
+ tTileWidth,
+ tTileLength,
+ tTileOffsets,
+ tTileByteCounts,
+ tImageLength,
+ tImageWidth,
+ tFillOrder,
+ tT4Options,
+ tT6Options:
+ val, err := d.ifdUint(p)
+ if err != nil {
+ return 0, err
+ }
+ d.features[int(tag)] = val
+ case tColorMap:
+ val, err := d.ifdUint(p)
+ if err != nil {
+ return 0, err
+ }
+ numcolors := len(val) / 3
+ if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 {
+ return 0, FormatError("bad ColorMap length")
+ }
+ d.palette = make([]color.Color, numcolors)
+ for i := 0; i < numcolors; i++ {
+ d.palette[i] = color.RGBA64{
+ uint16(val[i]),
+ uint16(val[i+numcolors]),
+ uint16(val[i+2*numcolors]),
+ 0xffff,
+ }
+ }
+ case tSampleFormat:
+ // Page 27 of the spec: If the SampleFormat is present and
+ // the value is not 1 [= unsigned integer data], a Baseline
+ // TIFF reader that cannot handle the SampleFormat value
+ // must terminate the import process gracefully.
+ val, err := d.ifdUint(p)
+ if err != nil {
+ return 0, err
+ }
+ for _, v := range val {
+ if v != 1 {
+ return 0, UnsupportedError("sample format")
+ }
+ }
+ }
+ return int(tag), nil
+}
+
+// readBits reads n bits from the internal buffer starting at the current offset.
+func (d *decoder) readBits(n uint) (v uint32, ok bool) {
+ for d.nbits < n {
+ d.v <<= 8
+ if d.off >= len(d.buf) {
+ return 0, false
+ }
+ d.v |= uint32(d.buf[d.off])
+ d.off++
+ d.nbits += 8
+ }
+ d.nbits -= n
+ rv := d.v >> d.nbits
+ d.v &^= rv << d.nbits
+ return rv, true
+}
+
+// flushBits discards the unread bits in the buffer used by readBits.
+// It is used at the end of a line.
+func (d *decoder) flushBits() {
+ d.v = 0
+ d.nbits = 0
+}
+
+// minInt returns the smaller of x or y.
+func minInt(a, b int) int {
+ if a <= b {
+ return a
+ }
+ return b
+}
+
+// decode decodes the raw data of an image.
+// It reads from d.buf and writes the strip or tile into dst.
+func (d *decoder) decode(dst image.Image, xmin, ymin, xmax, ymax int) error {
+ d.off = 0
+
+ // Apply horizontal predictor if necessary.
+ // In this case, p contains the color difference to the preceding pixel.
+ // See page 64-65 of the spec.
+ if d.firstVal(tPredictor) == prHorizontal {
+ switch d.bpp {
+ case 16:
+ var off int
+ n := 2 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
+ for y := ymin; y < ymax; y++ {
+ off += n
+ for x := 0; x < (xmax-xmin-1)*n; x += 2 {
+ if off+2 > len(d.buf) {
+ return errNoPixels
+ }
+ v0 := d.byteOrder.Uint16(d.buf[off-n : off-n+2])
+ v1 := d.byteOrder.Uint16(d.buf[off : off+2])
+ d.byteOrder.PutUint16(d.buf[off:off+2], v1+v0)
+ off += 2
+ }
+ }
+ case 8:
+ var off int
+ n := 1 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
+ for y := ymin; y < ymax; y++ {
+ off += n
+ for x := 0; x < (xmax-xmin-1)*n; x++ {
+ if off >= len(d.buf) {
+ return errNoPixels
+ }
+ d.buf[off] += d.buf[off-n]
+ off++
+ }
+ }
+ case 1:
+ return UnsupportedError("horizontal predictor with 1 BitsPerSample")
+ }
+ }
+
+ rMaxX := minInt(xmax, dst.Bounds().Max.X)
+ rMaxY := minInt(ymax, dst.Bounds().Max.Y)
+ switch d.mode {
+ case mGray, mGrayInvert:
+ if d.bpp == 16 {
+ img := dst.(*image.Gray16)
+ for y := ymin; y < rMaxY; y++ {
+ for x := xmin; x < rMaxX; x++ {
+ if d.off+2 > len(d.buf) {
+ return errNoPixels
+ }
+ v := d.byteOrder.Uint16(d.buf[d.off : d.off+2])
+ d.off += 2
+ if d.mode == mGrayInvert {
+ v = 0xffff - v
+ }
+ img.SetGray16(x, y, color.Gray16{v})
+ }
+ if rMaxX == img.Bounds().Max.X {
+ d.off += 2 * (xmax - img.Bounds().Max.X)
+ }
+ }
+ } else {
+ img := dst.(*image.Gray)
+ max := uint32((1 << d.bpp) - 1)
+ for y := ymin; y < rMaxY; y++ {
+ for x := xmin; x < rMaxX; x++ {
+ v, ok := d.readBits(d.bpp)
+ if !ok {
+ return errNoPixels
+ }
+ v = v * 0xff / max
+ if d.mode == mGrayInvert {
+ v = 0xff - v
+ }
+ img.SetGray(x, y, color.Gray{uint8(v)})
+ }
+ d.flushBits()
+ }
+ }
+ case mPaletted:
+ img := dst.(*image.Paletted)
+ for y := ymin; y < rMaxY; y++ {
+ for x := xmin; x < rMaxX; x++ {
+ v, ok := d.readBits(d.bpp)
+ if !ok {
+ return errNoPixels
+ }
+ img.SetColorIndex(x, y, uint8(v))
+ }
+ d.flushBits()
+ }
+ case mRGB:
+ if d.bpp == 16 {
+ img := dst.(*image.RGBA64)
+ for y := ymin; y < rMaxY; y++ {
+ for x := xmin; x < rMaxX; x++ {
+ if d.off+6 > len(d.buf) {
+ return errNoPixels
+ }
+ r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
+ g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
+ b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
+ d.off += 6
+ img.SetRGBA64(x, y, color.RGBA64{r, g, b, 0xffff})
+ }
+ }
+ } else {
+ img := dst.(*image.RGBA)
+ for y := ymin; y < rMaxY; y++ {
+ min := img.PixOffset(xmin, y)
+ max := img.PixOffset(rMaxX, y)
+ off := (y - ymin) * (xmax - xmin) * 3
+ for i := min; i < max; i += 4 {
+ if off+3 > len(d.buf) {
+ return errNoPixels
+ }
+ img.Pix[i+0] = d.buf[off+0]
+ img.Pix[i+1] = d.buf[off+1]
+ img.Pix[i+2] = d.buf[off+2]
+ img.Pix[i+3] = 0xff
+ off += 3
+ }
+ }
+ }
+ case mNRGBA:
+ if d.bpp == 16 {
+ img := dst.(*image.NRGBA64)
+ for y := ymin; y < rMaxY; y++ {
+ for x := xmin; x < rMaxX; x++ {
+ if d.off+8 > len(d.buf) {
+ return errNoPixels
+ }
+ r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
+ g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
+ b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
+ a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
+ d.off += 8
+ img.SetNRGBA64(x, y, color.NRGBA64{r, g, b, a})
+ }
+ }
+ } else {
+ img := dst.(*image.NRGBA)
+ for y := ymin; y < rMaxY; y++ {
+ min := img.PixOffset(xmin, y)
+ max := img.PixOffset(rMaxX, y)
+ i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
+ if i1 > len(d.buf) {
+ return errNoPixels
+ }
+ copy(img.Pix[min:max], d.buf[i0:i1])
+ }
+ }
+ case mRGBA:
+ if d.bpp == 16 {
+ img := dst.(*image.RGBA64)
+ for y := ymin; y < rMaxY; y++ {
+ for x := xmin; x < rMaxX; x++ {
+ if d.off+8 > len(d.buf) {
+ return errNoPixels
+ }
+ r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
+ g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
+ b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
+ a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
+ d.off += 8
+ img.SetRGBA64(x, y, color.RGBA64{r, g, b, a})
+ }
+ }
+ } else {
+ img := dst.(*image.RGBA)
+ for y := ymin; y < rMaxY; y++ {
+ min := img.PixOffset(xmin, y)
+ max := img.PixOffset(rMaxX, y)
+ i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
+ if i1 > len(d.buf) {
+ return errNoPixels
+ }
+ copy(img.Pix[min:max], d.buf[i0:i1])
+ }
+ }
+ }
+
+ return nil
+}
+
+func newDecoder(r io.Reader) (*decoder, error) {
+ d := &decoder{
+ r: newReaderAt(r),
+ features: make(map[int][]uint),
+ }
+
+ p := make([]byte, 8)
+ if _, err := d.r.ReadAt(p, 0); err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return nil, err
+ }
+ switch string(p[0:4]) {
+ case leHeader:
+ d.byteOrder = binary.LittleEndian
+ case beHeader:
+ d.byteOrder = binary.BigEndian
+ default:
+ return nil, FormatError("malformed header")
+ }
+
+ ifdOffset := int64(d.byteOrder.Uint32(p[4:8]))
+
+ // The first two bytes contain the number of entries (12 bytes each).
+ if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil {
+ return nil, err
+ }
+ numItems := int(d.byteOrder.Uint16(p[0:2]))
+
+ // All IFD entries are read in one chunk.
+ p = make([]byte, ifdLen*numItems)
+ if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil {
+ return nil, err
+ }
+
+ prevTag := -1
+ for i := 0; i < len(p); i += ifdLen {
+ tag, err := d.parseIFD(p[i : i+ifdLen])
+ if err != nil {
+ return nil, err
+ }
+ if tag <= prevTag {
+ return nil, FormatError("tags are not sorted in ascending order")
+ }
+ prevTag = tag
+ }
+
+ d.config.Width = int(d.firstVal(tImageWidth))
+ d.config.Height = int(d.firstVal(tImageLength))
+
+ if _, ok := d.features[tBitsPerSample]; !ok {
+ // Default is 1 per specification.
+ d.features[tBitsPerSample] = []uint{1}
+ }
+ d.bpp = d.firstVal(tBitsPerSample)
+ switch d.bpp {
+ case 0:
+ return nil, FormatError("BitsPerSample must not be 0")
+ case 1, 8, 16:
+ // Nothing to do, these are accepted by this implementation.
+ default:
+ return nil, UnsupportedError(fmt.Sprintf("BitsPerSample of %v", d.bpp))
+ }
+
+ // Determine the image mode.
+ switch d.firstVal(tPhotometricInterpretation) {
+ case pRGB:
+ if d.bpp == 16 {
+ for _, b := range d.features[tBitsPerSample] {
+ if b != 16 {
+ return nil, FormatError("wrong number of samples for 16bit RGB")
+ }
+ }
+ } else {
+ for _, b := range d.features[tBitsPerSample] {
+ if b != 8 {
+ return nil, FormatError("wrong number of samples for 8bit RGB")
+ }
+ }
+ }
+ // RGB images normally have 3 samples per pixel.
+ // If there are more, ExtraSamples (p. 31-32 of the spec)
+ // gives their meaning (usually an alpha channel).
+ //
+ // This implementation does not support extra samples
+ // of an unspecified type.
+ switch len(d.features[tBitsPerSample]) {
+ case 3:
+ d.mode = mRGB
+ if d.bpp == 16 {
+ d.config.ColorModel = color.RGBA64Model
+ } else {
+ d.config.ColorModel = color.RGBAModel
+ }
+ case 4:
+ switch d.firstVal(tExtraSamples) {
+ case 1:
+ d.mode = mRGBA
+ if d.bpp == 16 {
+ d.config.ColorModel = color.RGBA64Model
+ } else {
+ d.config.ColorModel = color.RGBAModel
+ }
+ case 2:
+ d.mode = mNRGBA
+ if d.bpp == 16 {
+ d.config.ColorModel = color.NRGBA64Model
+ } else {
+ d.config.ColorModel = color.NRGBAModel
+ }
+ default:
+ return nil, FormatError("wrong number of samples for RGB")
+ }
+ default:
+ return nil, FormatError("wrong number of samples for RGB")
+ }
+ case pPaletted:
+ d.mode = mPaletted
+ d.config.ColorModel = color.Palette(d.palette)
+ case pWhiteIsZero:
+ d.mode = mGrayInvert
+ if d.bpp == 16 {
+ d.config.ColorModel = color.Gray16Model
+ } else {
+ d.config.ColorModel = color.GrayModel
+ }
+ case pBlackIsZero:
+ d.mode = mGray
+ if d.bpp == 16 {
+ d.config.ColorModel = color.Gray16Model
+ } else {
+ d.config.ColorModel = color.GrayModel
+ }
+ default:
+ return nil, UnsupportedError("color model")
+ }
+
+ return d, nil
+}
+
+// DecodeConfig returns the color model and dimensions of a TIFF image without
+// decoding the entire image.
+func DecodeConfig(r io.Reader) (image.Config, error) {
+ d, err := newDecoder(r)
+ if err != nil {
+ return image.Config{}, err
+ }
+ return d.config, nil
+}
+
+func ccittFillOrder(tiffFillOrder uint) ccitt.Order {
+ if tiffFillOrder == 2 {
+ return ccitt.LSB
+ }
+ return ccitt.MSB
+}
+
+// Decode reads a TIFF image from r and returns it as an image.Image.
+// The type of Image returned depends on the contents of the TIFF.
+func Decode(r io.Reader) (img image.Image, err error) {
+ d, err := newDecoder(r)
+ if err != nil {
+ return
+ }
+
+ blockPadding := false
+ blockWidth := d.config.Width
+ blockHeight := d.config.Height
+ blocksAcross := 1
+ blocksDown := 1
+
+ if d.config.Width == 0 {
+ blocksAcross = 0
+ }
+ if d.config.Height == 0 {
+ blocksDown = 0
+ }
+
+ var blockOffsets, blockCounts []uint
+
+ if int(d.firstVal(tTileWidth)) != 0 {
+ blockPadding = true
+
+ blockWidth = int(d.firstVal(tTileWidth))
+ blockHeight = int(d.firstVal(tTileLength))
+
+ if blockWidth != 0 {
+ blocksAcross = (d.config.Width + blockWidth - 1) / blockWidth
+ }
+ if blockHeight != 0 {
+ blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
+ }
+
+ blockCounts = d.features[tTileByteCounts]
+ blockOffsets = d.features[tTileOffsets]
+
+ } else {
+ if int(d.firstVal(tRowsPerStrip)) != 0 {
+ blockHeight = int(d.firstVal(tRowsPerStrip))
+ }
+
+ if blockHeight != 0 {
+ blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
+ }
+
+ blockOffsets = d.features[tStripOffsets]
+ blockCounts = d.features[tStripByteCounts]
+ }
+
+ // Check if we have the right number of strips/tiles, offsets and counts.
+ if n := blocksAcross * blocksDown; len(blockOffsets) < n || len(blockCounts) < n {
+ return nil, FormatError("inconsistent header")
+ }
+
+ imgRect := image.Rect(0, 0, d.config.Width, d.config.Height)
+ switch d.mode {
+ case mGray, mGrayInvert:
+ if d.bpp == 16 {
+ img = image.NewGray16(imgRect)
+ } else {
+ img = image.NewGray(imgRect)
+ }
+ case mPaletted:
+ img = image.NewPaletted(imgRect, d.palette)
+ case mNRGBA:
+ if d.bpp == 16 {
+ img = image.NewNRGBA64(imgRect)
+ } else {
+ img = image.NewNRGBA(imgRect)
+ }
+ case mRGB, mRGBA:
+ if d.bpp == 16 {
+ img = image.NewRGBA64(imgRect)
+ } else {
+ img = image.NewRGBA(imgRect)
+ }
+ }
+
+ for i := 0; i < blocksAcross; i++ {
+ blkW := blockWidth
+ if !blockPadding && i == blocksAcross-1 && d.config.Width%blockWidth != 0 {
+ blkW = d.config.Width % blockWidth
+ }
+ for j := 0; j < blocksDown; j++ {
+ blkH := blockHeight
+ if !blockPadding && j == blocksDown-1 && d.config.Height%blockHeight != 0 {
+ blkH = d.config.Height % blockHeight
+ }
+ offset := int64(blockOffsets[j*blocksAcross+i])
+ n := int64(blockCounts[j*blocksAcross+i])
+ switch d.firstVal(tCompression) {
+
+ // According to the spec, Compression does not have a default value,
+ // but some tools interpret a missing Compression value as none so we do
+ // the same.
+ case cNone, 0:
+ if b, ok := d.r.(*buffer); ok {
+ d.buf, err = b.Slice(int(offset), int(n))
+ } else {
+ d.buf = make([]byte, n)
+ _, err = d.r.ReadAt(d.buf, offset)
+ }
+ case cG3:
+ inv := d.firstVal(tPhotometricInterpretation) == pWhiteIsZero
+ order := ccittFillOrder(d.firstVal(tFillOrder))
+ r := ccitt.NewReader(io.NewSectionReader(d.r, offset, n), order, ccitt.Group3, blkW, blkH, &ccitt.Options{Invert: inv, Align: false})
+ d.buf, err = ioutil.ReadAll(r)
+ case cG4:
+ inv := d.firstVal(tPhotometricInterpretation) == pWhiteIsZero
+ order := ccittFillOrder(d.firstVal(tFillOrder))
+ r := ccitt.NewReader(io.NewSectionReader(d.r, offset, n), order, ccitt.Group4, blkW, blkH, &ccitt.Options{Invert: inv, Align: false})
+ d.buf, err = ioutil.ReadAll(r)
+ case cLZW:
+ r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), lzw.MSB, 8)
+ d.buf, err = ioutil.ReadAll(r)
+ r.Close()
+ case cDeflate, cDeflateOld:
+ var r io.ReadCloser
+ r, err = zlib.NewReader(io.NewSectionReader(d.r, offset, n))
+ if err != nil {
+ return nil, err
+ }
+ d.buf, err = ioutil.ReadAll(r)
+ r.Close()
+ case cPackBits:
+ d.buf, err = unpackBits(io.NewSectionReader(d.r, offset, n))
+ default:
+ err = UnsupportedError(fmt.Sprintf("compression value %d", d.firstVal(tCompression)))
+ }
+ if err != nil {
+ return nil, err
+ }
+
+ xmin := i * blockWidth
+ ymin := j * blockHeight
+ xmax := xmin + blkW
+ ymax := ymin + blkH
+ err = d.decode(img, xmin, ymin, xmax, ymax)
+ if err != nil {
+ return nil, err
+ }
+ }
+ }
+ return
+}
+
+func init() {
+ image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig)
+ image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig)
+}
diff --git a/vendor/golang.org/x/image/tiff/writer.go b/vendor/golang.org/x/image/tiff/writer.go
new file mode 100644
index 00000000..c8a01cea
--- /dev/null
+++ b/vendor/golang.org/x/image/tiff/writer.go
@@ -0,0 +1,438 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tiff
+
+import (
+ "bytes"
+ "compress/zlib"
+ "encoding/binary"
+ "image"
+ "io"
+ "sort"
+)
+
+// The TIFF format allows to choose the order of the different elements freely.
+// The basic structure of a TIFF file written by this package is:
+//
+// 1. Header (8 bytes).
+// 2. Image data.
+// 3. Image File Directory (IFD).
+// 4. "Pointer area" for larger entries in the IFD.
+
+// We only write little-endian TIFF files.
+var enc = binary.LittleEndian
+
+// An ifdEntry is a single entry in an Image File Directory.
+// A value of type dtRational is composed of two 32-bit values,
+// thus data contains two uints (numerator and denominator) for a single number.
+type ifdEntry struct {
+ tag int
+ datatype int
+ data []uint32
+}
+
+func (e ifdEntry) putData(p []byte) {
+ for _, d := range e.data {
+ switch e.datatype {
+ case dtByte, dtASCII:
+ p[0] = byte(d)
+ p = p[1:]
+ case dtShort:
+ enc.PutUint16(p, uint16(d))
+ p = p[2:]
+ case dtLong, dtRational:
+ enc.PutUint32(p, uint32(d))
+ p = p[4:]
+ }
+ }
+}
+
+type byTag []ifdEntry
+
+func (d byTag) Len() int { return len(d) }
+func (d byTag) Less(i, j int) bool { return d[i].tag < d[j].tag }
+func (d byTag) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
+
+func encodeGray(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
+ if !predictor {
+ return writePix(w, pix, dy, dx, stride)
+ }
+ buf := make([]byte, dx)
+ for y := 0; y < dy; y++ {
+ min := y*stride + 0
+ max := y*stride + dx
+ off := 0
+ var v0 uint8
+ for i := min; i < max; i++ {
+ v1 := pix[i]
+ buf[off] = v1 - v0
+ v0 = v1
+ off++
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func encodeGray16(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
+ buf := make([]byte, dx*2)
+ for y := 0; y < dy; y++ {
+ min := y*stride + 0
+ max := y*stride + dx*2
+ off := 0
+ var v0 uint16
+ for i := min; i < max; i += 2 {
+ // An image.Gray16's Pix is in big-endian order.
+ v1 := uint16(pix[i])<<8 | uint16(pix[i+1])
+ if predictor {
+ v0, v1 = v1, v1-v0
+ }
+ // We only write little-endian TIFF files.
+ buf[off+0] = byte(v1)
+ buf[off+1] = byte(v1 >> 8)
+ off += 2
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func encodeRGBA(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
+ if !predictor {
+ return writePix(w, pix, dy, dx*4, stride)
+ }
+ buf := make([]byte, dx*4)
+ for y := 0; y < dy; y++ {
+ min := y*stride + 0
+ max := y*stride + dx*4
+ off := 0
+ var r0, g0, b0, a0 uint8
+ for i := min; i < max; i += 4 {
+ r1, g1, b1, a1 := pix[i+0], pix[i+1], pix[i+2], pix[i+3]
+ buf[off+0] = r1 - r0
+ buf[off+1] = g1 - g0
+ buf[off+2] = b1 - b0
+ buf[off+3] = a1 - a0
+ off += 4
+ r0, g0, b0, a0 = r1, g1, b1, a1
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func encodeRGBA64(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
+ buf := make([]byte, dx*8)
+ for y := 0; y < dy; y++ {
+ min := y*stride + 0
+ max := y*stride + dx*8
+ off := 0
+ var r0, g0, b0, a0 uint16
+ for i := min; i < max; i += 8 {
+ // An image.RGBA64's Pix is in big-endian order.
+ r1 := uint16(pix[i+0])<<8 | uint16(pix[i+1])
+ g1 := uint16(pix[i+2])<<8 | uint16(pix[i+3])
+ b1 := uint16(pix[i+4])<<8 | uint16(pix[i+5])
+ a1 := uint16(pix[i+6])<<8 | uint16(pix[i+7])
+ if predictor {
+ r0, r1 = r1, r1-r0
+ g0, g1 = g1, g1-g0
+ b0, b1 = b1, b1-b0
+ a0, a1 = a1, a1-a0
+ }
+ // We only write little-endian TIFF files.
+ buf[off+0] = byte(r1)
+ buf[off+1] = byte(r1 >> 8)
+ buf[off+2] = byte(g1)
+ buf[off+3] = byte(g1 >> 8)
+ buf[off+4] = byte(b1)
+ buf[off+5] = byte(b1 >> 8)
+ buf[off+6] = byte(a1)
+ buf[off+7] = byte(a1 >> 8)
+ off += 8
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func encode(w io.Writer, m image.Image, predictor bool) error {
+ bounds := m.Bounds()
+ buf := make([]byte, 4*bounds.Dx())
+ for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
+ off := 0
+ if predictor {
+ var r0, g0, b0, a0 uint8
+ for x := bounds.Min.X; x < bounds.Max.X; x++ {
+ r, g, b, a := m.At(x, y).RGBA()
+ r1 := uint8(r >> 8)
+ g1 := uint8(g >> 8)
+ b1 := uint8(b >> 8)
+ a1 := uint8(a >> 8)
+ buf[off+0] = r1 - r0
+ buf[off+1] = g1 - g0
+ buf[off+2] = b1 - b0
+ buf[off+3] = a1 - a0
+ off += 4
+ r0, g0, b0, a0 = r1, g1, b1, a1
+ }
+ } else {
+ for x := bounds.Min.X; x < bounds.Max.X; x++ {
+ r, g, b, a := m.At(x, y).RGBA()
+ buf[off+0] = uint8(r >> 8)
+ buf[off+1] = uint8(g >> 8)
+ buf[off+2] = uint8(b >> 8)
+ buf[off+3] = uint8(a >> 8)
+ off += 4
+ }
+ }
+ if _, err := w.Write(buf); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+// writePix writes the internal byte array of an image to w. It is less general
+// but much faster then encode. writePix is used when pix directly
+// corresponds to one of the TIFF image types.
+func writePix(w io.Writer, pix []byte, nrows, length, stride int) error {
+ if length == stride {
+ _, err := w.Write(pix[:nrows*length])
+ return err
+ }
+ for ; nrows > 0; nrows-- {
+ if _, err := w.Write(pix[:length]); err != nil {
+ return err
+ }
+ pix = pix[stride:]
+ }
+ return nil
+}
+
+func writeIFD(w io.Writer, ifdOffset int, d []ifdEntry) error {
+ var buf [ifdLen]byte
+ // Make space for "pointer area" containing IFD entry data
+ // longer than 4 bytes.
+ parea := make([]byte, 1024)
+ pstart := ifdOffset + ifdLen*len(d) + 6
+ var o int // Current offset in parea.
+
+ // The IFD has to be written with the tags in ascending order.
+ sort.Sort(byTag(d))
+
+ // Write the number of entries in this IFD.
+ if err := binary.Write(w, enc, uint16(len(d))); err != nil {
+ return err
+ }
+ for _, ent := range d {
+ enc.PutUint16(buf[0:2], uint16(ent.tag))
+ enc.PutUint16(buf[2:4], uint16(ent.datatype))
+ count := uint32(len(ent.data))
+ if ent.datatype == dtRational {
+ count /= 2
+ }
+ enc.PutUint32(buf[4:8], count)
+ datalen := int(count * lengths[ent.datatype])
+ if datalen <= 4 {
+ ent.putData(buf[8:12])
+ } else {
+ if (o + datalen) > len(parea) {
+ newlen := len(parea) + 1024
+ for (o + datalen) > newlen {
+ newlen += 1024
+ }
+ newarea := make([]byte, newlen)
+ copy(newarea, parea)
+ parea = newarea
+ }
+ ent.putData(parea[o : o+datalen])
+ enc.PutUint32(buf[8:12], uint32(pstart+o))
+ o += datalen
+ }
+ if _, err := w.Write(buf[:]); err != nil {
+ return err
+ }
+ }
+ // The IFD ends with the offset of the next IFD in the file,
+ // or zero if it is the last one (page 14).
+ if err := binary.Write(w, enc, uint32(0)); err != nil {
+ return err
+ }
+ _, err := w.Write(parea[:o])
+ return err
+}
+
+// Options are the encoding parameters.
+type Options struct {
+ // Compression is the type of compression used.
+ Compression CompressionType
+ // Predictor determines whether a differencing predictor is used;
+ // if true, instead of each pixel's color, the color difference to the
+ // preceding one is saved. This improves the compression for certain
+ // types of images and compressors. For example, it works well for
+ // photos with Deflate compression.
+ Predictor bool
+}
+
+// Encode writes the image m to w. opt determines the options used for
+// encoding, such as the compression type. If opt is nil, an uncompressed
+// image is written.
+func Encode(w io.Writer, m image.Image, opt *Options) error {
+ d := m.Bounds().Size()
+
+ compression := uint32(cNone)
+ predictor := false
+ if opt != nil {
+ compression = opt.Compression.specValue()
+ // The predictor field is only used with LZW. See page 64 of the spec.
+ predictor = opt.Predictor && compression == cLZW
+ }
+
+ _, err := io.WriteString(w, leHeader)
+ if err != nil {
+ return err
+ }
+
+ // Compressed data is written into a buffer first, so that we
+ // know the compressed size.
+ var buf bytes.Buffer
+ // dst holds the destination for the pixel data of the image --
+ // either w or a writer to buf.
+ var dst io.Writer
+ // imageLen is the length of the pixel data in bytes.
+ // The offset of the IFD is imageLen + 8 header bytes.
+ var imageLen int
+
+ switch compression {
+ case cNone:
+ dst = w
+ // Write IFD offset before outputting pixel data.
+ switch m.(type) {
+ case *image.Paletted:
+ imageLen = d.X * d.Y * 1
+ case *image.Gray:
+ imageLen = d.X * d.Y * 1
+ case *image.Gray16:
+ imageLen = d.X * d.Y * 2
+ case *image.RGBA64:
+ imageLen = d.X * d.Y * 8
+ case *image.NRGBA64:
+ imageLen = d.X * d.Y * 8
+ default:
+ imageLen = d.X * d.Y * 4
+ }
+ err = binary.Write(w, enc, uint32(imageLen+8))
+ if err != nil {
+ return err
+ }
+ case cDeflate:
+ dst = zlib.NewWriter(&buf)
+ }
+
+ pr := uint32(prNone)
+ photometricInterpretation := uint32(pRGB)
+ samplesPerPixel := uint32(4)
+ bitsPerSample := []uint32{8, 8, 8, 8}
+ extraSamples := uint32(0)
+ colorMap := []uint32{}
+
+ if predictor {
+ pr = prHorizontal
+ }
+ switch m := m.(type) {
+ case *image.Paletted:
+ photometricInterpretation = pPaletted
+ samplesPerPixel = 1
+ bitsPerSample = []uint32{8}
+ colorMap = make([]uint32, 256*3)
+ for i := 0; i < 256 && i < len(m.Palette); i++ {
+ r, g, b, _ := m.Palette[i].RGBA()
+ colorMap[i+0*256] = uint32(r)
+ colorMap[i+1*256] = uint32(g)
+ colorMap[i+2*256] = uint32(b)
+ }
+ err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
+ case *image.Gray:
+ photometricInterpretation = pBlackIsZero
+ samplesPerPixel = 1
+ bitsPerSample = []uint32{8}
+ err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
+ case *image.Gray16:
+ photometricInterpretation = pBlackIsZero
+ samplesPerPixel = 1
+ bitsPerSample = []uint32{16}
+ err = encodeGray16(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
+ case *image.NRGBA:
+ extraSamples = 2 // Unassociated alpha.
+ err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
+ case *image.NRGBA64:
+ extraSamples = 2 // Unassociated alpha.
+ bitsPerSample = []uint32{16, 16, 16, 16}
+ err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
+ case *image.RGBA:
+ extraSamples = 1 // Associated alpha.
+ err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
+ case *image.RGBA64:
+ extraSamples = 1 // Associated alpha.
+ bitsPerSample = []uint32{16, 16, 16, 16}
+ err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
+ default:
+ extraSamples = 1 // Associated alpha.
+ err = encode(dst, m, predictor)
+ }
+ if err != nil {
+ return err
+ }
+
+ if compression != cNone {
+ if err = dst.(io.Closer).Close(); err != nil {
+ return err
+ }
+ imageLen = buf.Len()
+ if err = binary.Write(w, enc, uint32(imageLen+8)); err != nil {
+ return err
+ }
+ if _, err = buf.WriteTo(w); err != nil {
+ return err
+ }
+ }
+
+ ifd := []ifdEntry{
+ {tImageWidth, dtShort, []uint32{uint32(d.X)}},
+ {tImageLength, dtShort, []uint32{uint32(d.Y)}},
+ {tBitsPerSample, dtShort, bitsPerSample},
+ {tCompression, dtShort, []uint32{compression}},
+ {tPhotometricInterpretation, dtShort, []uint32{photometricInterpretation}},
+ {tStripOffsets, dtLong, []uint32{8}},
+ {tSamplesPerPixel, dtShort, []uint32{samplesPerPixel}},
+ {tRowsPerStrip, dtShort, []uint32{uint32(d.Y)}},
+ {tStripByteCounts, dtLong, []uint32{uint32(imageLen)}},
+ // There is currently no support for storing the image
+ // resolution, so give a bogus value of 72x72 dpi.
+ {tXResolution, dtRational, []uint32{72, 1}},
+ {tYResolution, dtRational, []uint32{72, 1}},
+ {tResolutionUnit, dtShort, []uint32{resPerInch}},
+ }
+ if pr != prNone {
+ ifd = append(ifd, ifdEntry{tPredictor, dtShort, []uint32{pr}})
+ }
+ if len(colorMap) != 0 {
+ ifd = append(ifd, ifdEntry{tColorMap, dtShort, colorMap})
+ }
+ if extraSamples > 0 {
+ ifd = append(ifd, ifdEntry{tExtraSamples, dtShort, []uint32{extraSamples}})
+ }
+
+ return writeIFD(w, imageLen+8, ifd)
+}