summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/image/vp8/reconstruct.go
diff options
context:
space:
mode:
authorWim <wim@42.be>2019-02-27 00:41:50 +0100
committerGitHub <noreply@github.com>2019-02-27 00:41:50 +0100
commit26a7e35f2777b8424477eef1838125a6ae55fe48 (patch)
treed48cfdb02bb7a6d0558413cbad906f2ec59cb3a2 /vendor/golang.org/x/image/vp8/reconstruct.go
parentd44d2a5f0014fda12ce78d35e416dffab6b7c04a (diff)
downloadmatterbridge-msglm-26a7e35f2777b8424477eef1838125a6ae55fe48.tar.gz
matterbridge-msglm-26a7e35f2777b8424477eef1838125a6ae55fe48.tar.bz2
matterbridge-msglm-26a7e35f2777b8424477eef1838125a6ae55fe48.zip
Add MediaConvertWebPToPNG option (telegram). (#741)
* Add MediaConvertWebPToPNG option (telegram). When enabled matterbridge will convert .webp files to .png files before uploading them to the mediaserver of the other bridges. Fixes #398
Diffstat (limited to 'vendor/golang.org/x/image/vp8/reconstruct.go')
-rw-r--r--vendor/golang.org/x/image/vp8/reconstruct.go442
1 files changed, 442 insertions, 0 deletions
diff --git a/vendor/golang.org/x/image/vp8/reconstruct.go b/vendor/golang.org/x/image/vp8/reconstruct.go
new file mode 100644
index 00000000..c1cc4b53
--- /dev/null
+++ b/vendor/golang.org/x/image/vp8/reconstruct.go
@@ -0,0 +1,442 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package vp8
+
+// This file implements decoding DCT/WHT residual coefficients and
+// reconstructing YCbCr data equal to predicted values plus residuals.
+//
+// There are 1*16*16 + 2*8*8 + 1*4*4 coefficients per macroblock:
+// - 1*16*16 luma DCT coefficients,
+// - 2*8*8 chroma DCT coefficients, and
+// - 1*4*4 luma WHT coefficients.
+// Coefficients are read in lots of 16, and the later coefficients in each lot
+// are often zero.
+//
+// The YCbCr data consists of 1*16*16 luma values and 2*8*8 chroma values,
+// plus previously decoded values along the top and left borders. The combined
+// values are laid out as a [1+16+1+8][32]uint8 so that vertically adjacent
+// samples are 32 bytes apart. In detail, the layout is:
+//
+// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+// . . . . . . . a b b b b b b b b b b b b b b b b c c c c . . . . 0
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 1
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 2
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 3
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 4
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 5
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 6
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 7
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 8
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 9
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 10
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 11
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y c c c c . . . . 12
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 13
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 14
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 15
+// . . . . . . . d Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y . . . . . . . . 16
+// . . . . . . . e f f f f f f f f . . . . . . . g h h h h h h h h 17
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 18
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 19
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 20
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 21
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 22
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 23
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 24
+// . . . . . . . i B B B B B B B B . . . . . . . j R R R R R R R R 25
+//
+// Y, B and R are the reconstructed luma (Y) and chroma (B, R) values.
+// The Y values are predicted (either as one 16x16 region or 16 4x4 regions)
+// based on the row above's Y values (some combination of {abc} or {dYC}) and
+// the column left's Y values (either {ad} or {bY}). Similarly, B and R values
+// are predicted on the row above and column left of their respective 8x8
+// region: {efi} for B, {ghj} for R.
+//
+// For uppermost macroblocks (i.e. those with mby == 0), the {abcefgh} values
+// are initialized to 0x81. Otherwise, they are copied from the bottom row of
+// the macroblock above. The {c} values are then duplicated from row 0 to rows
+// 4, 8 and 12 of the ybr workspace.
+// Similarly, for leftmost macroblocks (i.e. those with mbx == 0), the {adeigj}
+// values are initialized to 0x7f. Otherwise, they are copied from the right
+// column of the macroblock to the left.
+// For the top-left macroblock (with mby == 0 && mbx == 0), {aeg} is 0x81.
+//
+// When moving from one macroblock to the next horizontally, the {adeigj}
+// values can simply be copied from the workspace to itself, shifted by 8 or
+// 16 columns. When moving from one macroblock to the next vertically,
+// filtering can occur and hence the row values have to be copied from the
+// post-filtered image instead of the pre-filtered workspace.
+
+const (
+ bCoeffBase = 1*16*16 + 0*8*8
+ rCoeffBase = 1*16*16 + 1*8*8
+ whtCoeffBase = 1*16*16 + 2*8*8
+)
+
+const (
+ ybrYX = 8
+ ybrYY = 1
+ ybrBX = 8
+ ybrBY = 18
+ ybrRX = 24
+ ybrRY = 18
+)
+
+// prepareYBR prepares the {abcdefghij} elements of ybr.
+func (d *Decoder) prepareYBR(mbx, mby int) {
+ if mbx == 0 {
+ for y := 0; y < 17; y++ {
+ d.ybr[y][7] = 0x81
+ }
+ for y := 17; y < 26; y++ {
+ d.ybr[y][7] = 0x81
+ d.ybr[y][23] = 0x81
+ }
+ } else {
+ for y := 0; y < 17; y++ {
+ d.ybr[y][7] = d.ybr[y][7+16]
+ }
+ for y := 17; y < 26; y++ {
+ d.ybr[y][7] = d.ybr[y][15]
+ d.ybr[y][23] = d.ybr[y][31]
+ }
+ }
+ if mby == 0 {
+ for x := 7; x < 28; x++ {
+ d.ybr[0][x] = 0x7f
+ }
+ for x := 7; x < 16; x++ {
+ d.ybr[17][x] = 0x7f
+ }
+ for x := 23; x < 32; x++ {
+ d.ybr[17][x] = 0x7f
+ }
+ } else {
+ for i := 0; i < 16; i++ {
+ d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i]
+ }
+ for i := 0; i < 8; i++ {
+ d.ybr[17][8+i] = d.img.Cb[(8*mby-1)*d.img.CStride+8*mbx+i]
+ }
+ for i := 0; i < 8; i++ {
+ d.ybr[17][24+i] = d.img.Cr[(8*mby-1)*d.img.CStride+8*mbx+i]
+ }
+ if mbx == d.mbw-1 {
+ for i := 16; i < 20; i++ {
+ d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+15]
+ }
+ } else {
+ for i := 16; i < 20; i++ {
+ d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i]
+ }
+ }
+ }
+ for y := 4; y < 16; y += 4 {
+ d.ybr[y][24] = d.ybr[0][24]
+ d.ybr[y][25] = d.ybr[0][25]
+ d.ybr[y][26] = d.ybr[0][26]
+ d.ybr[y][27] = d.ybr[0][27]
+ }
+}
+
+// btou converts a bool to a 0/1 value.
+func btou(b bool) uint8 {
+ if b {
+ return 1
+ }
+ return 0
+}
+
+// pack packs four 0/1 values into four bits of a uint32.
+func pack(x [4]uint8, shift int) uint32 {
+ u := uint32(x[0])<<0 | uint32(x[1])<<1 | uint32(x[2])<<2 | uint32(x[3])<<3
+ return u << uint(shift)
+}
+
+// unpack unpacks four 0/1 values from a four-bit value.
+var unpack = [16][4]uint8{
+ {0, 0, 0, 0},
+ {1, 0, 0, 0},
+ {0, 1, 0, 0},
+ {1, 1, 0, 0},
+ {0, 0, 1, 0},
+ {1, 0, 1, 0},
+ {0, 1, 1, 0},
+ {1, 1, 1, 0},
+ {0, 0, 0, 1},
+ {1, 0, 0, 1},
+ {0, 1, 0, 1},
+ {1, 1, 0, 1},
+ {0, 0, 1, 1},
+ {1, 0, 1, 1},
+ {0, 1, 1, 1},
+ {1, 1, 1, 1},
+}
+
+var (
+ // The mapping from 4x4 region position to band is specified in section 13.3.
+ bands = [17]uint8{0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0}
+ // Category probabilties are specified in section 13.2.
+ // Decoding categories 1 and 2 are done inline.
+ cat3456 = [4][12]uint8{
+ {173, 148, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0},
+ {176, 155, 140, 135, 0, 0, 0, 0, 0, 0, 0, 0},
+ {180, 157, 141, 134, 130, 0, 0, 0, 0, 0, 0, 0},
+ {254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0},
+ }
+ // The zigzag order is:
+ // 0 1 5 6
+ // 2 4 7 12
+ // 3 8 11 13
+ // 9 10 14 15
+ zigzag = [16]uint8{0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15}
+)
+
+// parseResiduals4 parses a 4x4 region of residual coefficients, as specified
+// in section 13.3, and returns a 0/1 value indicating whether there was at
+// least one non-zero coefficient.
+// r is the partition to read bits from.
+// plane and context describe which token probability table to use. context is
+// either 0, 1 or 2, and equals how many of the macroblock left and macroblock
+// above have non-zero coefficients.
+// quant are the DC/AC quantization factors.
+// skipFirstCoeff is whether the DC coefficient has already been parsed.
+// coeffBase is the base index of d.coeff to write to.
+func (d *Decoder) parseResiduals4(r *partition, plane int, context uint8, quant [2]uint16, skipFirstCoeff bool, coeffBase int) uint8 {
+ prob, n := &d.tokenProb[plane], 0
+ if skipFirstCoeff {
+ n = 1
+ }
+ p := prob[bands[n]][context]
+ if !r.readBit(p[0]) {
+ return 0
+ }
+ for n != 16 {
+ n++
+ if !r.readBit(p[1]) {
+ p = prob[bands[n]][0]
+ continue
+ }
+ var v uint32
+ if !r.readBit(p[2]) {
+ v = 1
+ p = prob[bands[n]][1]
+ } else {
+ if !r.readBit(p[3]) {
+ if !r.readBit(p[4]) {
+ v = 2
+ } else {
+ v = 3 + r.readUint(p[5], 1)
+ }
+ } else if !r.readBit(p[6]) {
+ if !r.readBit(p[7]) {
+ // Category 1.
+ v = 5 + r.readUint(159, 1)
+ } else {
+ // Category 2.
+ v = 7 + 2*r.readUint(165, 1) + r.readUint(145, 1)
+ }
+ } else {
+ // Categories 3, 4, 5 or 6.
+ b1 := r.readUint(p[8], 1)
+ b0 := r.readUint(p[9+b1], 1)
+ cat := 2*b1 + b0
+ tab := &cat3456[cat]
+ v = 0
+ for i := 0; tab[i] != 0; i++ {
+ v *= 2
+ v += r.readUint(tab[i], 1)
+ }
+ v += 3 + (8 << cat)
+ }
+ p = prob[bands[n]][2]
+ }
+ z := zigzag[n-1]
+ c := int32(v) * int32(quant[btou(z > 0)])
+ if r.readBit(uniformProb) {
+ c = -c
+ }
+ d.coeff[coeffBase+int(z)] = int16(c)
+ if n == 16 || !r.readBit(p[0]) {
+ return 1
+ }
+ }
+ return 1
+}
+
+// parseResiduals parses the residuals and returns whether inner loop filtering
+// should be skipped for this macroblock.
+func (d *Decoder) parseResiduals(mbx, mby int) (skip bool) {
+ partition := &d.op[mby&(d.nOP-1)]
+ plane := planeY1SansY2
+ quant := &d.quant[d.segment]
+
+ // Parse the DC coefficient of each 4x4 luma region.
+ if d.usePredY16 {
+ nz := d.parseResiduals4(partition, planeY2, d.leftMB.nzY16+d.upMB[mbx].nzY16, quant.y2, false, whtCoeffBase)
+ d.leftMB.nzY16 = nz
+ d.upMB[mbx].nzY16 = nz
+ d.inverseWHT16()
+ plane = planeY1WithY2
+ }
+
+ var (
+ nzDC, nzAC [4]uint8
+ nzDCMask, nzACMask uint32
+ coeffBase int
+ )
+
+ // Parse the luma coefficients.
+ lnz := unpack[d.leftMB.nzMask&0x0f]
+ unz := unpack[d.upMB[mbx].nzMask&0x0f]
+ for y := 0; y < 4; y++ {
+ nz := lnz[y]
+ for x := 0; x < 4; x++ {
+ nz = d.parseResiduals4(partition, plane, nz+unz[x], quant.y1, d.usePredY16, coeffBase)
+ unz[x] = nz
+ nzAC[x] = nz
+ nzDC[x] = btou(d.coeff[coeffBase] != 0)
+ coeffBase += 16
+ }
+ lnz[y] = nz
+ nzDCMask |= pack(nzDC, y*4)
+ nzACMask |= pack(nzAC, y*4)
+ }
+ lnzMask := pack(lnz, 0)
+ unzMask := pack(unz, 0)
+
+ // Parse the chroma coefficients.
+ lnz = unpack[d.leftMB.nzMask>>4]
+ unz = unpack[d.upMB[mbx].nzMask>>4]
+ for c := 0; c < 4; c += 2 {
+ for y := 0; y < 2; y++ {
+ nz := lnz[y+c]
+ for x := 0; x < 2; x++ {
+ nz = d.parseResiduals4(partition, planeUV, nz+unz[x+c], quant.uv, false, coeffBase)
+ unz[x+c] = nz
+ nzAC[y*2+x] = nz
+ nzDC[y*2+x] = btou(d.coeff[coeffBase] != 0)
+ coeffBase += 16
+ }
+ lnz[y+c] = nz
+ }
+ nzDCMask |= pack(nzDC, 16+c*2)
+ nzACMask |= pack(nzAC, 16+c*2)
+ }
+ lnzMask |= pack(lnz, 4)
+ unzMask |= pack(unz, 4)
+
+ // Save decoder state.
+ d.leftMB.nzMask = uint8(lnzMask)
+ d.upMB[mbx].nzMask = uint8(unzMask)
+ d.nzDCMask = nzDCMask
+ d.nzACMask = nzACMask
+
+ // Section 15.1 of the spec says that "Steps 2 and 4 [of the loop filter]
+ // are skipped... [if] there is no DCT coefficient coded for the whole
+ // macroblock."
+ return nzDCMask == 0 && nzACMask == 0
+}
+
+// reconstructMacroblock applies the predictor functions and adds the inverse-
+// DCT transformed residuals to recover the YCbCr data.
+func (d *Decoder) reconstructMacroblock(mbx, mby int) {
+ if d.usePredY16 {
+ p := checkTopLeftPred(mbx, mby, d.predY16)
+ predFunc16[p](d, 1, 8)
+ for j := 0; j < 4; j++ {
+ for i := 0; i < 4; i++ {
+ n := 4*j + i
+ y := 4*j + 1
+ x := 4*i + 8
+ mask := uint32(1) << uint(n)
+ if d.nzACMask&mask != 0 {
+ d.inverseDCT4(y, x, 16*n)
+ } else if d.nzDCMask&mask != 0 {
+ d.inverseDCT4DCOnly(y, x, 16*n)
+ }
+ }
+ }
+ } else {
+ for j := 0; j < 4; j++ {
+ for i := 0; i < 4; i++ {
+ n := 4*j + i
+ y := 4*j + 1
+ x := 4*i + 8
+ predFunc4[d.predY4[j][i]](d, y, x)
+ mask := uint32(1) << uint(n)
+ if d.nzACMask&mask != 0 {
+ d.inverseDCT4(y, x, 16*n)
+ } else if d.nzDCMask&mask != 0 {
+ d.inverseDCT4DCOnly(y, x, 16*n)
+ }
+ }
+ }
+ }
+ p := checkTopLeftPred(mbx, mby, d.predC8)
+ predFunc8[p](d, ybrBY, ybrBX)
+ if d.nzACMask&0x0f0000 != 0 {
+ d.inverseDCT8(ybrBY, ybrBX, bCoeffBase)
+ } else if d.nzDCMask&0x0f0000 != 0 {
+ d.inverseDCT8DCOnly(ybrBY, ybrBX, bCoeffBase)
+ }
+ predFunc8[p](d, ybrRY, ybrRX)
+ if d.nzACMask&0xf00000 != 0 {
+ d.inverseDCT8(ybrRY, ybrRX, rCoeffBase)
+ } else if d.nzDCMask&0xf00000 != 0 {
+ d.inverseDCT8DCOnly(ybrRY, ybrRX, rCoeffBase)
+ }
+}
+
+// reconstruct reconstructs one macroblock and returns whether inner loop
+// filtering should be skipped for it.
+func (d *Decoder) reconstruct(mbx, mby int) (skip bool) {
+ if d.segmentHeader.updateMap {
+ if !d.fp.readBit(d.segmentHeader.prob[0]) {
+ d.segment = int(d.fp.readUint(d.segmentHeader.prob[1], 1))
+ } else {
+ d.segment = int(d.fp.readUint(d.segmentHeader.prob[2], 1)) + 2
+ }
+ }
+ if d.useSkipProb {
+ skip = d.fp.readBit(d.skipProb)
+ }
+ // Prepare the workspace.
+ for i := range d.coeff {
+ d.coeff[i] = 0
+ }
+ d.prepareYBR(mbx, mby)
+ // Parse the predictor modes.
+ d.usePredY16 = d.fp.readBit(145)
+ if d.usePredY16 {
+ d.parsePredModeY16(mbx)
+ } else {
+ d.parsePredModeY4(mbx)
+ }
+ d.parsePredModeC8()
+ // Parse the residuals.
+ if !skip {
+ skip = d.parseResiduals(mbx, mby)
+ } else {
+ if d.usePredY16 {
+ d.leftMB.nzY16 = 0
+ d.upMB[mbx].nzY16 = 0
+ }
+ d.leftMB.nzMask = 0
+ d.upMB[mbx].nzMask = 0
+ d.nzDCMask = 0
+ d.nzACMask = 0
+ }
+ // Reconstruct the YCbCr data and copy it to the image.
+ d.reconstructMacroblock(mbx, mby)
+ for i, y := (mby*d.img.YStride+mbx)*16, 0; y < 16; i, y = i+d.img.YStride, y+1 {
+ copy(d.img.Y[i:i+16], d.ybr[ybrYY+y][ybrYX:ybrYX+16])
+ }
+ for i, y := (mby*d.img.CStride+mbx)*8, 0; y < 8; i, y = i+d.img.CStride, y+1 {
+ copy(d.img.Cb[i:i+8], d.ybr[ybrBY+y][ybrBX:ybrBX+8])
+ copy(d.img.Cr[i:i+8], d.ybr[ybrRY+y][ybrRX:ybrRX+8])
+ }
+ return skip
+}