diff options
author | Wim <wim@42.be> | 2022-01-31 00:27:37 +0100 |
---|---|---|
committer | Wim <wim@42.be> | 2022-03-20 14:57:48 +0100 |
commit | e3cafeaf9292f67459ff1d186f68283bfaedf2ae (patch) | |
tree | b69c39620aa91dba695b3b935c6651c0fb37ce75 /vendor/github.com/remyoudompheng/bigfft/fermat.go | |
parent | e7b193788a56ee7cdb02a87a9db0ad6724ef66d5 (diff) | |
download | matterbridge-msglm-e3cafeaf9292f67459ff1d186f68283bfaedf2ae.tar.gz matterbridge-msglm-e3cafeaf9292f67459ff1d186f68283bfaedf2ae.tar.bz2 matterbridge-msglm-e3cafeaf9292f67459ff1d186f68283bfaedf2ae.zip |
Add dependencies/vendor (whatsapp)
Diffstat (limited to 'vendor/github.com/remyoudompheng/bigfft/fermat.go')
-rw-r--r-- | vendor/github.com/remyoudompheng/bigfft/fermat.go | 216 |
1 files changed, 216 insertions, 0 deletions
diff --git a/vendor/github.com/remyoudompheng/bigfft/fermat.go b/vendor/github.com/remyoudompheng/bigfft/fermat.go new file mode 100644 index 00000000..200ee573 --- /dev/null +++ b/vendor/github.com/remyoudompheng/bigfft/fermat.go @@ -0,0 +1,216 @@ +package bigfft + +import ( + "math/big" +) + +// Arithmetic modulo 2^n+1. + +// A fermat of length w+1 represents a number modulo 2^(w*_W) + 1. The last +// word is zero or one. A number has at most two representatives satisfying the +// 0-1 last word constraint. +type fermat nat + +func (n fermat) String() string { return nat(n).String() } + +func (z fermat) norm() { + n := len(z) - 1 + c := z[n] + if c == 0 { + return + } + if z[0] >= c { + z[n] = 0 + z[0] -= c + return + } + // z[0] < z[n]. + subVW(z, z, c) // Substract c + if c > 1 { + z[n] -= c - 1 + c = 1 + } + // Add back c. + if z[n] == 1 { + z[n] = 0 + return + } else { + addVW(z, z, 1) + } +} + +// Shift computes (x << k) mod (2^n+1). +func (z fermat) Shift(x fermat, k int) { + if len(z) != len(x) { + panic("len(z) != len(x) in Shift") + } + n := len(x) - 1 + // Shift by n*_W is taking the opposite. + k %= 2 * n * _W + if k < 0 { + k += 2 * n * _W + } + neg := false + if k >= n*_W { + k -= n * _W + neg = true + } + + kw, kb := k/_W, k%_W + + z[n] = 1 // Add (-1) + if !neg { + for i := 0; i < kw; i++ { + z[i] = 0 + } + // Shift left by kw words. + // x = a·2^(n-k) + b + // x<<k = (b<<k) - a + copy(z[kw:], x[:n-kw]) + b := subVV(z[:kw+1], z[:kw+1], x[n-kw:]) + if z[kw+1] > 0 { + z[kw+1] -= b + } else { + subVW(z[kw+1:], z[kw+1:], b) + } + } else { + for i := kw + 1; i < n; i++ { + z[i] = 0 + } + // Shift left and negate, by kw words. + copy(z[:kw+1], x[n-kw:n+1]) // z_low = x_high + b := subVV(z[kw:n], z[kw:n], x[:n-kw]) // z_high -= x_low + z[n] -= b + } + // Add back 1. + if z[n] > 0 { + z[n]-- + } else if z[0] < ^big.Word(0) { + z[0]++ + } else { + addVW(z, z, 1) + } + // Shift left by kb bits + shlVU(z, z, uint(kb)) + z.norm() +} + +// ShiftHalf shifts x by k/2 bits the left. Shifting by 1/2 bit +// is multiplication by sqrt(2) mod 2^n+1 which is 2^(3n/4) - 2^(n/4). +// A temporary buffer must be provided in tmp. +func (z fermat) ShiftHalf(x fermat, k int, tmp fermat) { + n := len(z) - 1 + if k%2 == 0 { + z.Shift(x, k/2) + return + } + u := (k - 1) / 2 + a := u + (3*_W/4)*n + b := u + (_W/4)*n + z.Shift(x, a) + tmp.Shift(x, b) + z.Sub(z, tmp) +} + +// Add computes addition mod 2^n+1. +func (z fermat) Add(x, y fermat) fermat { + if len(z) != len(x) { + panic("Add: len(z) != len(x)") + } + addVV(z, x, y) // there cannot be a carry here. + z.norm() + return z +} + +// Sub computes substraction mod 2^n+1. +func (z fermat) Sub(x, y fermat) fermat { + if len(z) != len(x) { + panic("Add: len(z) != len(x)") + } + n := len(y) - 1 + b := subVV(z[:n], x[:n], y[:n]) + b += y[n] + // If b > 0, we need to subtract b<<n, which is the same as adding b. + z[n] = x[n] + if z[0] <= ^big.Word(0)-b { + z[0] += b + } else { + addVW(z, z, b) + } + z.norm() + return z +} + +func (z fermat) Mul(x, y fermat) fermat { + if len(x) != len(y) { + panic("Mul: len(x) != len(y)") + } + n := len(x) - 1 + if n < 30 { + z = z[:2*n+2] + basicMul(z, x, y) + z = z[:2*n+1] + } else { + var xi, yi, zi big.Int + xi.SetBits(x) + yi.SetBits(y) + zi.SetBits(z) + zb := zi.Mul(&xi, &yi).Bits() + if len(zb) <= n { + // Short product. + copy(z, zb) + for i := len(zb); i < len(z); i++ { + z[i] = 0 + } + return z + } + z = zb + } + // len(z) is at most 2n+1. + if len(z) > 2*n+1 { + panic("len(z) > 2n+1") + } + // We now have + // z = z[:n] + 1<<(n*W) * z[n:2n+1] + // which normalizes to: + // z = z[:n] - z[n:2n] + z[2n] + c1 := big.Word(0) + if len(z) > 2*n { + c1 = addVW(z[:n], z[:n], z[2*n]) + } + c2 := big.Word(0) + if len(z) >= 2*n { + c2 = subVV(z[:n], z[:n], z[n:2*n]) + } else { + m := len(z) - n + c2 = subVV(z[:m], z[:m], z[n:]) + c2 = subVW(z[m:n], z[m:n], c2) + } + // Restore carries. + // Substracting z[n] -= c2 is the same + // as z[0] += c2 + z = z[:n+1] + z[n] = c1 + c := addVW(z, z, c2) + if c != 0 { + panic("impossible") + } + z.norm() + return z +} + +// copied from math/big +// +// basicMul multiplies x and y and leaves the result in z. +// The (non-normalized) result is placed in z[0 : len(x) + len(y)]. +func basicMul(z, x, y fermat) { + // initialize z + for i := 0; i < len(z); i++ { + z[i] = 0 + } + for i, d := range y { + if d != 0 { + z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) + } + } +} |