summaryrefslogtreecommitdiffstats
path: root/vendor/github.com/klauspost/compress/zstd/fse_encoder.go
diff options
context:
space:
mode:
authordependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>2022-01-28 23:48:40 +0100
committerGitHub <noreply@github.com>2022-01-28 23:48:40 +0100
commit5a1fd7daddbb07b93e3611d023ea48e1991fc0c6 (patch)
treee592a99163702c4c6214c9519a7983fa58fab13c /vendor/github.com/klauspost/compress/zstd/fse_encoder.go
parentac06a268096285a9f795bd19df950075a930c9d6 (diff)
downloadmatterbridge-msglm-5a1fd7daddbb07b93e3611d023ea48e1991fc0c6.tar.gz
matterbridge-msglm-5a1fd7daddbb07b93e3611d023ea48e1991fc0c6.tar.bz2
matterbridge-msglm-5a1fd7daddbb07b93e3611d023ea48e1991fc0c6.zip
Bump github.com/SevereCloud/vksdk/v2 from 2.11.0 to 2.13.0 (#1698)
Bumps [github.com/SevereCloud/vksdk/v2](https://github.com/SevereCloud/vksdk) from 2.11.0 to 2.13.0. - [Release notes](https://github.com/SevereCloud/vksdk/releases) - [Commits](https://github.com/SevereCloud/vksdk/compare/v2.11.0...v2.13.0) --- updated-dependencies: - dependency-name: github.com/SevereCloud/vksdk/v2 dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Diffstat (limited to 'vendor/github.com/klauspost/compress/zstd/fse_encoder.go')
-rw-r--r--vendor/github.com/klauspost/compress/zstd/fse_encoder.go724
1 files changed, 724 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/compress/zstd/fse_encoder.go b/vendor/github.com/klauspost/compress/zstd/fse_encoder.go
new file mode 100644
index 00000000..5442061b
--- /dev/null
+++ b/vendor/github.com/klauspost/compress/zstd/fse_encoder.go
@@ -0,0 +1,724 @@
+// Copyright 2019+ Klaus Post. All rights reserved.
+// License information can be found in the LICENSE file.
+// Based on work by Yann Collet, released under BSD License.
+
+package zstd
+
+import (
+ "errors"
+ "fmt"
+ "math"
+)
+
+const (
+ // For encoding we only support up to
+ maxEncTableLog = 8
+ maxEncTablesize = 1 << maxTableLog
+ maxEncTableMask = (1 << maxTableLog) - 1
+ minEncTablelog = 5
+ maxEncSymbolValue = maxMatchLengthSymbol
+)
+
+// Scratch provides temporary storage for compression and decompression.
+type fseEncoder struct {
+ symbolLen uint16 // Length of active part of the symbol table.
+ actualTableLog uint8 // Selected tablelog.
+ ct cTable // Compression tables.
+ maxCount int // count of the most probable symbol
+ zeroBits bool // no bits has prob > 50%.
+ clearCount bool // clear count
+ useRLE bool // This encoder is for RLE
+ preDefined bool // This encoder is predefined.
+ reUsed bool // Set to know when the encoder has been reused.
+ rleVal uint8 // RLE Symbol
+ maxBits uint8 // Maximum output bits after transform.
+
+ // TODO: Technically zstd should be fine with 64 bytes.
+ count [256]uint32
+ norm [256]int16
+}
+
+// cTable contains tables used for compression.
+type cTable struct {
+ tableSymbol []byte
+ stateTable []uint16
+ symbolTT []symbolTransform
+}
+
+// symbolTransform contains the state transform for a symbol.
+type symbolTransform struct {
+ deltaNbBits uint32
+ deltaFindState int16
+ outBits uint8
+}
+
+// String prints values as a human readable string.
+func (s symbolTransform) String() string {
+ return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits)
+}
+
+// Histogram allows to populate the histogram and skip that step in the compression,
+// It otherwise allows to inspect the histogram when compression is done.
+// To indicate that you have populated the histogram call HistogramFinished
+// with the value of the highest populated symbol, as well as the number of entries
+// in the most populated entry. These are accepted at face value.
+func (s *fseEncoder) Histogram() *[256]uint32 {
+ return &s.count
+}
+
+// HistogramFinished can be called to indicate that the histogram has been populated.
+// maxSymbol is the index of the highest set symbol of the next data segment.
+// maxCount is the number of entries in the most populated entry.
+// These are accepted at face value.
+func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) {
+ s.maxCount = maxCount
+ s.symbolLen = uint16(maxSymbol) + 1
+ s.clearCount = maxCount != 0
+}
+
+// prepare will prepare and allocate scratch tables used for both compression and decompression.
+func (s *fseEncoder) prepare() (*fseEncoder, error) {
+ if s == nil {
+ s = &fseEncoder{}
+ }
+ s.useRLE = false
+ if s.clearCount && s.maxCount == 0 {
+ for i := range s.count {
+ s.count[i] = 0
+ }
+ s.clearCount = false
+ }
+ return s, nil
+}
+
+// allocCtable will allocate tables needed for compression.
+// If existing tables a re big enough, they are simply re-used.
+func (s *fseEncoder) allocCtable() {
+ tableSize := 1 << s.actualTableLog
+ // get tableSymbol that is big enough.
+ if cap(s.ct.tableSymbol) < tableSize {
+ s.ct.tableSymbol = make([]byte, tableSize)
+ }
+ s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
+
+ ctSize := tableSize
+ if cap(s.ct.stateTable) < ctSize {
+ s.ct.stateTable = make([]uint16, ctSize)
+ }
+ s.ct.stateTable = s.ct.stateTable[:ctSize]
+
+ if cap(s.ct.symbolTT) < 256 {
+ s.ct.symbolTT = make([]symbolTransform, 256)
+ }
+ s.ct.symbolTT = s.ct.symbolTT[:256]
+}
+
+// buildCTable will populate the compression table so it is ready to be used.
+func (s *fseEncoder) buildCTable() error {
+ tableSize := uint32(1 << s.actualTableLog)
+ highThreshold := tableSize - 1
+ var cumul [256]int16
+
+ s.allocCtable()
+ tableSymbol := s.ct.tableSymbol[:tableSize]
+ // symbol start positions
+ {
+ cumul[0] = 0
+ for ui, v := range s.norm[:s.symbolLen-1] {
+ u := byte(ui) // one less than reference
+ if v == -1 {
+ // Low proba symbol
+ cumul[u+1] = cumul[u] + 1
+ tableSymbol[highThreshold] = u
+ highThreshold--
+ } else {
+ cumul[u+1] = cumul[u] + v
+ }
+ }
+ // Encode last symbol separately to avoid overflowing u
+ u := int(s.symbolLen - 1)
+ v := s.norm[s.symbolLen-1]
+ if v == -1 {
+ // Low proba symbol
+ cumul[u+1] = cumul[u] + 1
+ tableSymbol[highThreshold] = byte(u)
+ highThreshold--
+ } else {
+ cumul[u+1] = cumul[u] + v
+ }
+ if uint32(cumul[s.symbolLen]) != tableSize {
+ return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
+ }
+ cumul[s.symbolLen] = int16(tableSize) + 1
+ }
+ // Spread symbols
+ s.zeroBits = false
+ {
+ step := tableStep(tableSize)
+ tableMask := tableSize - 1
+ var position uint32
+ // if any symbol > largeLimit, we may have 0 bits output.
+ largeLimit := int16(1 << (s.actualTableLog - 1))
+ for ui, v := range s.norm[:s.symbolLen] {
+ symbol := byte(ui)
+ if v > largeLimit {
+ s.zeroBits = true
+ }
+ for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
+ tableSymbol[position] = symbol
+ position = (position + step) & tableMask
+ for position > highThreshold {
+ position = (position + step) & tableMask
+ } /* Low proba area */
+ }
+ }
+
+ // Check if we have gone through all positions
+ if position != 0 {
+ return errors.New("position!=0")
+ }
+ }
+
+ // Build table
+ table := s.ct.stateTable
+ {
+ tsi := int(tableSize)
+ for u, v := range tableSymbol {
+ // TableU16 : sorted by symbol order; gives next state value
+ table[cumul[v]] = uint16(tsi + u)
+ cumul[v]++
+ }
+ }
+
+ // Build Symbol Transformation Table
+ {
+ total := int16(0)
+ symbolTT := s.ct.symbolTT[:s.symbolLen]
+ tableLog := s.actualTableLog
+ tl := (uint32(tableLog) << 16) - (1 << tableLog)
+ for i, v := range s.norm[:s.symbolLen] {
+ switch v {
+ case 0:
+ case -1, 1:
+ symbolTT[i].deltaNbBits = tl
+ symbolTT[i].deltaFindState = total - 1
+ total++
+ default:
+ maxBitsOut := uint32(tableLog) - highBit(uint32(v-1))
+ minStatePlus := uint32(v) << maxBitsOut
+ symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
+ symbolTT[i].deltaFindState = total - v
+ total += v
+ }
+ }
+ if total != int16(tableSize) {
+ return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
+ }
+ }
+ return nil
+}
+
+var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
+
+func (s *fseEncoder) setRLE(val byte) {
+ s.allocCtable()
+ s.actualTableLog = 0
+ s.ct.stateTable = s.ct.stateTable[:1]
+ s.ct.symbolTT[val] = symbolTransform{
+ deltaFindState: 0,
+ deltaNbBits: 0,
+ }
+ if debugEncoder {
+ println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val])
+ }
+ s.rleVal = val
+ s.useRLE = true
+}
+
+// setBits will set output bits for the transform.
+// if nil is provided, the number of bits is equal to the index.
+func (s *fseEncoder) setBits(transform []byte) {
+ if s.reUsed || s.preDefined {
+ return
+ }
+ if s.useRLE {
+ if transform == nil {
+ s.ct.symbolTT[s.rleVal].outBits = s.rleVal
+ s.maxBits = s.rleVal
+ return
+ }
+ s.maxBits = transform[s.rleVal]
+ s.ct.symbolTT[s.rleVal].outBits = s.maxBits
+ return
+ }
+ if transform == nil {
+ for i := range s.ct.symbolTT[:s.symbolLen] {
+ s.ct.symbolTT[i].outBits = uint8(i)
+ }
+ s.maxBits = uint8(s.symbolLen - 1)
+ return
+ }
+ s.maxBits = 0
+ for i, v := range transform[:s.symbolLen] {
+ s.ct.symbolTT[i].outBits = v
+ if v > s.maxBits {
+ // We could assume bits always going up, but we play safe.
+ s.maxBits = v
+ }
+ }
+}
+
+// normalizeCount will normalize the count of the symbols so
+// the total is equal to the table size.
+// If successful, compression tables will also be made ready.
+func (s *fseEncoder) normalizeCount(length int) error {
+ if s.reUsed {
+ return nil
+ }
+ s.optimalTableLog(length)
+ var (
+ tableLog = s.actualTableLog
+ scale = 62 - uint64(tableLog)
+ step = (1 << 62) / uint64(length)
+ vStep = uint64(1) << (scale - 20)
+ stillToDistribute = int16(1 << tableLog)
+ largest int
+ largestP int16
+ lowThreshold = (uint32)(length >> tableLog)
+ )
+ if s.maxCount == length {
+ s.useRLE = true
+ return nil
+ }
+ s.useRLE = false
+ for i, cnt := range s.count[:s.symbolLen] {
+ // already handled
+ // if (count[s] == s.length) return 0; /* rle special case */
+
+ if cnt == 0 {
+ s.norm[i] = 0
+ continue
+ }
+ if cnt <= lowThreshold {
+ s.norm[i] = -1
+ stillToDistribute--
+ } else {
+ proba := (int16)((uint64(cnt) * step) >> scale)
+ if proba < 8 {
+ restToBeat := vStep * uint64(rtbTable[proba])
+ v := uint64(cnt)*step - (uint64(proba) << scale)
+ if v > restToBeat {
+ proba++
+ }
+ }
+ if proba > largestP {
+ largestP = proba
+ largest = i
+ }
+ s.norm[i] = proba
+ stillToDistribute -= proba
+ }
+ }
+
+ if -stillToDistribute >= (s.norm[largest] >> 1) {
+ // corner case, need another normalization method
+ err := s.normalizeCount2(length)
+ if err != nil {
+ return err
+ }
+ if debugAsserts {
+ err = s.validateNorm()
+ if err != nil {
+ return err
+ }
+ }
+ return s.buildCTable()
+ }
+ s.norm[largest] += stillToDistribute
+ if debugAsserts {
+ err := s.validateNorm()
+ if err != nil {
+ return err
+ }
+ }
+ return s.buildCTable()
+}
+
+// Secondary normalization method.
+// To be used when primary method fails.
+func (s *fseEncoder) normalizeCount2(length int) error {
+ const notYetAssigned = -2
+ var (
+ distributed uint32
+ total = uint32(length)
+ tableLog = s.actualTableLog
+ lowThreshold = total >> tableLog
+ lowOne = (total * 3) >> (tableLog + 1)
+ )
+ for i, cnt := range s.count[:s.symbolLen] {
+ if cnt == 0 {
+ s.norm[i] = 0
+ continue
+ }
+ if cnt <= lowThreshold {
+ s.norm[i] = -1
+ distributed++
+ total -= cnt
+ continue
+ }
+ if cnt <= lowOne {
+ s.norm[i] = 1
+ distributed++
+ total -= cnt
+ continue
+ }
+ s.norm[i] = notYetAssigned
+ }
+ toDistribute := (1 << tableLog) - distributed
+
+ if (total / toDistribute) > lowOne {
+ // risk of rounding to zero
+ lowOne = (total * 3) / (toDistribute * 2)
+ for i, cnt := range s.count[:s.symbolLen] {
+ if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
+ s.norm[i] = 1
+ distributed++
+ total -= cnt
+ continue
+ }
+ }
+ toDistribute = (1 << tableLog) - distributed
+ }
+ if distributed == uint32(s.symbolLen)+1 {
+ // all values are pretty poor;
+ // probably incompressible data (should have already been detected);
+ // find max, then give all remaining points to max
+ var maxV int
+ var maxC uint32
+ for i, cnt := range s.count[:s.symbolLen] {
+ if cnt > maxC {
+ maxV = i
+ maxC = cnt
+ }
+ }
+ s.norm[maxV] += int16(toDistribute)
+ return nil
+ }
+
+ if total == 0 {
+ // all of the symbols were low enough for the lowOne or lowThreshold
+ for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
+ if s.norm[i] > 0 {
+ toDistribute--
+ s.norm[i]++
+ }
+ }
+ return nil
+ }
+
+ var (
+ vStepLog = 62 - uint64(tableLog)
+ mid = uint64((1 << (vStepLog - 1)) - 1)
+ rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
+ tmpTotal = mid
+ )
+ for i, cnt := range s.count[:s.symbolLen] {
+ if s.norm[i] == notYetAssigned {
+ var (
+ end = tmpTotal + uint64(cnt)*rStep
+ sStart = uint32(tmpTotal >> vStepLog)
+ sEnd = uint32(end >> vStepLog)
+ weight = sEnd - sStart
+ )
+ if weight < 1 {
+ return errors.New("weight < 1")
+ }
+ s.norm[i] = int16(weight)
+ tmpTotal = end
+ }
+ }
+ return nil
+}
+
+// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
+func (s *fseEncoder) optimalTableLog(length int) {
+ tableLog := uint8(maxEncTableLog)
+ minBitsSrc := highBit(uint32(length)) + 1
+ minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2
+ minBits := uint8(minBitsSymbols)
+ if minBitsSrc < minBitsSymbols {
+ minBits = uint8(minBitsSrc)
+ }
+
+ maxBitsSrc := uint8(highBit(uint32(length-1))) - 2
+ if maxBitsSrc < tableLog {
+ // Accuracy can be reduced
+ tableLog = maxBitsSrc
+ }
+ if minBits > tableLog {
+ tableLog = minBits
+ }
+ // Need a minimum to safely represent all symbol values
+ if tableLog < minEncTablelog {
+ tableLog = minEncTablelog
+ }
+ if tableLog > maxEncTableLog {
+ tableLog = maxEncTableLog
+ }
+ s.actualTableLog = tableLog
+}
+
+// validateNorm validates the normalized histogram table.
+func (s *fseEncoder) validateNorm() (err error) {
+ var total int
+ for _, v := range s.norm[:s.symbolLen] {
+ if v >= 0 {
+ total += int(v)
+ } else {
+ total -= int(v)
+ }
+ }
+ defer func() {
+ if err == nil {
+ return
+ }
+ fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
+ for i, v := range s.norm[:s.symbolLen] {
+ fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
+ }
+ }()
+ if total != (1 << s.actualTableLog) {
+ return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
+ }
+ for i, v := range s.count[s.symbolLen:] {
+ if v != 0 {
+ return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
+ }
+ }
+ return nil
+}
+
+// writeCount will write the normalized histogram count to header.
+// This is read back by readNCount.
+func (s *fseEncoder) writeCount(out []byte) ([]byte, error) {
+ if s.useRLE {
+ return append(out, s.rleVal), nil
+ }
+ if s.preDefined || s.reUsed {
+ // Never write predefined.
+ return out, nil
+ }
+
+ var (
+ tableLog = s.actualTableLog
+ tableSize = 1 << tableLog
+ previous0 bool
+ charnum uint16
+
+ // maximum header size plus 2 extra bytes for final output if bitCount == 0.
+ maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2
+
+ // Write Table Size
+ bitStream = uint32(tableLog - minEncTablelog)
+ bitCount = uint(4)
+ remaining = int16(tableSize + 1) /* +1 for extra accuracy */
+ threshold = int16(tableSize)
+ nbBits = uint(tableLog + 1)
+ outP = len(out)
+ )
+ if cap(out) < outP+maxHeaderSize {
+ out = append(out, make([]byte, maxHeaderSize*3)...)
+ out = out[:len(out)-maxHeaderSize*3]
+ }
+ out = out[:outP+maxHeaderSize]
+
+ // stops at 1
+ for remaining > 1 {
+ if previous0 {
+ start := charnum
+ for s.norm[charnum] == 0 {
+ charnum++
+ }
+ for charnum >= start+24 {
+ start += 24
+ bitStream += uint32(0xFFFF) << bitCount
+ out[outP] = byte(bitStream)
+ out[outP+1] = byte(bitStream >> 8)
+ outP += 2
+ bitStream >>= 16
+ }
+ for charnum >= start+3 {
+ start += 3
+ bitStream += 3 << bitCount
+ bitCount += 2
+ }
+ bitStream += uint32(charnum-start) << bitCount
+ bitCount += 2
+ if bitCount > 16 {
+ out[outP] = byte(bitStream)
+ out[outP+1] = byte(bitStream >> 8)
+ outP += 2
+ bitStream >>= 16
+ bitCount -= 16
+ }
+ }
+
+ count := s.norm[charnum]
+ charnum++
+ max := (2*threshold - 1) - remaining
+ if count < 0 {
+ remaining += count
+ } else {
+ remaining -= count
+ }
+ count++ // +1 for extra accuracy
+ if count >= threshold {
+ count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
+ }
+ bitStream += uint32(count) << bitCount
+ bitCount += nbBits
+ if count < max {
+ bitCount--
+ }
+
+ previous0 = count == 1
+ if remaining < 1 {
+ return nil, errors.New("internal error: remaining < 1")
+ }
+ for remaining < threshold {
+ nbBits--
+ threshold >>= 1
+ }
+
+ if bitCount > 16 {
+ out[outP] = byte(bitStream)
+ out[outP+1] = byte(bitStream >> 8)
+ outP += 2
+ bitStream >>= 16
+ bitCount -= 16
+ }
+ }
+
+ if outP+2 > len(out) {
+ return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen])
+ }
+ out[outP] = byte(bitStream)
+ out[outP+1] = byte(bitStream >> 8)
+ outP += int((bitCount + 7) / 8)
+
+ if charnum > s.symbolLen {
+ return nil, errors.New("internal error: charnum > s.symbolLen")
+ }
+ return out[:outP], nil
+}
+
+// Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
+// note 1 : assume symbolValue is valid (<= maxSymbolValue)
+// note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits *
+func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 {
+ minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16
+ threshold := (minNbBits + 1) << 16
+ if debugAsserts {
+ if !(s.actualTableLog < 16) {
+ panic("!s.actualTableLog < 16")
+ }
+ // ensure enough room for renormalization double shift
+ if !(uint8(accuracyLog) < 31-s.actualTableLog) {
+ panic("!uint8(accuracyLog) < 31-s.actualTableLog")
+ }
+ }
+ tableSize := uint32(1) << s.actualTableLog
+ deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize)
+ // linear interpolation (very approximate)
+ normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog
+ bitMultiplier := uint32(1) << accuracyLog
+ if debugAsserts {
+ if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold {
+ panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold")
+ }
+ if normalizedDeltaFromThreshold > bitMultiplier {
+ panic("normalizedDeltaFromThreshold > bitMultiplier")
+ }
+ }
+ return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold
+}
+
+// Returns the cost in bits of encoding the distribution in count using ctable.
+// Histogram should only be up to the last non-zero symbol.
+// Returns an -1 if ctable cannot represent all the symbols in count.
+func (s *fseEncoder) approxSize(hist []uint32) uint32 {
+ if int(s.symbolLen) < len(hist) {
+ // More symbols than we have.
+ return math.MaxUint32
+ }
+ if s.useRLE {
+ // We will never reuse RLE encoders.
+ return math.MaxUint32
+ }
+ const kAccuracyLog = 8
+ badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog
+ var cost uint32
+ for i, v := range hist {
+ if v == 0 {
+ continue
+ }
+ if s.norm[i] == 0 {
+ return math.MaxUint32
+ }
+ bitCost := s.bitCost(uint8(i), kAccuracyLog)
+ if bitCost > badCost {
+ return math.MaxUint32
+ }
+ cost += v * bitCost
+ }
+ return cost >> kAccuracyLog
+}
+
+// maxHeaderSize returns the maximum header size in bits.
+// This is not exact size, but we want a penalty for new tables anyway.
+func (s *fseEncoder) maxHeaderSize() uint32 {
+ if s.preDefined {
+ return 0
+ }
+ if s.useRLE {
+ return 8
+ }
+ return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8
+}
+
+// cState contains the compression state of a stream.
+type cState struct {
+ bw *bitWriter
+ stateTable []uint16
+ state uint16
+}
+
+// init will initialize the compression state to the first symbol of the stream.
+func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) {
+ c.bw = bw
+ c.stateTable = ct.stateTable
+ if len(c.stateTable) == 1 {
+ // RLE
+ c.stateTable[0] = uint16(0)
+ c.state = 0
+ return
+ }
+ nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
+ im := int32((nbBitsOut << 16) - first.deltaNbBits)
+ lu := (im >> nbBitsOut) + int32(first.deltaFindState)
+ c.state = c.stateTable[lu]
+}
+
+// encode the output symbol provided and write it to the bitstream.
+func (c *cState) encode(symbolTT symbolTransform) {
+ nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
+ dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState)
+ c.bw.addBits16NC(c.state, uint8(nbBitsOut))
+ c.state = c.stateTable[dstState]
+}
+
+// flush will write the tablelog to the output and flush the remaining full bytes.
+func (c *cState) flush(tableLog uint8) {
+ c.bw.flush32()
+ c.bw.addBits16NC(c.state, tableLog)
+}