diff options
author | Benau <Benau@users.noreply.github.com> | 2021-08-25 04:32:50 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-08-24 22:32:50 +0200 |
commit | 53cafa9f3d0c8be33821fc7338b1da97e91d9cc6 (patch) | |
tree | 964a225219099a1a1c282e27913767da588191b4 /vendor/github.com/Benau/tgsconverter/libtgsconverter/quantize_mediancut.go | |
parent | d4195deb3a6305c49c50ff30e8af978c7f1bdd92 (diff) | |
download | matterbridge-msglm-53cafa9f3d0c8be33821fc7338b1da97e91d9cc6.tar.gz matterbridge-msglm-53cafa9f3d0c8be33821fc7338b1da97e91d9cc6.tar.bz2 matterbridge-msglm-53cafa9f3d0c8be33821fc7338b1da97e91d9cc6.zip |
Convert .tgs with go libraries (and cgo) (telegram) (#1569)
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo`
The default binaries are still "pure" go and uses the old way of converting.
* Move lottie_convert.py conversion code to its own file
* Add optional libtgsconverter
* Update vendor
* Apply suggestions from code review
* Update bridge/helper/libtgsconverter.go
Co-authored-by: Wim <wim@42.be>
Diffstat (limited to 'vendor/github.com/Benau/tgsconverter/libtgsconverter/quantize_mediancut.go')
-rw-r--r-- | vendor/github.com/Benau/tgsconverter/libtgsconverter/quantize_mediancut.go | 209 |
1 files changed, 209 insertions, 0 deletions
diff --git a/vendor/github.com/Benau/tgsconverter/libtgsconverter/quantize_mediancut.go b/vendor/github.com/Benau/tgsconverter/libtgsconverter/quantize_mediancut.go new file mode 100644 index 00000000..850708b9 --- /dev/null +++ b/vendor/github.com/Benau/tgsconverter/libtgsconverter/quantize_mediancut.go @@ -0,0 +1,209 @@ +package libtgsconverter + +import ( + "image" + "image/color" + "sync" +) + +type bucketPool struct { + sync.Pool + maxCap int + m sync.Mutex +} + +func (p *bucketPool) getBucket(c int) colorBucket { + p.m.Lock() + if p.maxCap > c { + p.maxCap = p.maxCap * 99 / 100 + } + if p.maxCap < c { + p.maxCap = c + } + maxCap := p.maxCap + p.m.Unlock() + val := p.Pool.Get() + if val == nil || cap(val.(colorBucket)) < c { + return make(colorBucket, maxCap)[0:c] + } + slice := val.(colorBucket) + slice = slice[0:c] + for i := range slice { + slice[i] = colorPriority{} + } + return slice +} + +var bpool bucketPool + +// aggregationType specifies the type of aggregation to be done +type aggregationType uint8 + +const ( + // Mode - pick the highest priority value + mode aggregationType = iota + // Mean - weighted average all values + mean +) + +// medianCutQuantizer implements the go draw.Quantizer interface using the Median Cut method +type medianCutQuantizer struct { + // The type of aggregation to be used to find final colors + aggregation aggregationType + // The weighting function to use on each pixel + weighting func(image.Image, int, int) uint32 + // Whether need to add a transparent entry after conversion + reserveTransparent bool +} + +//bucketize takes a bucket and performs median cut on it to obtain the target number of grouped buckets +func bucketize(colors colorBucket, num int) (buckets []colorBucket) { + if len(colors) == 0 || num == 0 { + return nil + } + bucket := colors + buckets = make([]colorBucket, 1, num*2) + buckets[0] = bucket + + for len(buckets) < num && len(buckets) < len(colors) { // Limit to palette capacity or number of colors + bucket, buckets = buckets[0], buckets[1:] + if len(bucket) < 2 { + buckets = append(buckets, bucket) + continue + } else if len(bucket) == 2 { + buckets = append(buckets, bucket[:1], bucket[1:]) + continue + } + + left, right := bucket.partition() + buckets = append(buckets, left, right) + } + return +} + +// palettize finds a single color to represent a set of color buckets +func (q* medianCutQuantizer) palettize(p color.Palette, buckets []colorBucket) color.Palette { + for _, bucket := range buckets { + switch q.aggregation { + case mean: + mean := bucket.mean() + p = append(p, mean) + case mode: + var best colorPriority + for _, c := range bucket { + if c.p > best.p { + best = c + } + } + p = append(p, best.RGBA) + } + } + return p +} + +// quantizeSlice expands the provided bucket and then palettizes the result +func (q* medianCutQuantizer) quantizeSlice(p color.Palette, colors []colorPriority) color.Palette { + numColors := cap(p) - len(p) + reserveTransparent := q.reserveTransparent + if reserveTransparent { + numColors-- + } + buckets := bucketize(colors, numColors) + p = q.palettize(p, buckets) + return p +} + +func colorAt(m image.Image, x int, y int) color.RGBA { + switch i := m.(type) { + case *image.YCbCr: + yi := i.YOffset(x, y) + ci := i.COffset(x, y) + c := color.YCbCr{ + i.Y[yi], + i.Cb[ci], + i.Cr[ci], + } + return color.RGBA{c.Y, c.Cb, c.Cr, 255} + case *image.RGBA: + ci := i.PixOffset(x, y) + return color.RGBA{i.Pix[ci+0], i.Pix[ci+1], i.Pix[ci+2], i.Pix[ci+3]} + default: + return color.RGBAModel.Convert(i.At(x, y)).(color.RGBA) + } +} + +// buildBucketMultiple creates a prioritized color slice with all the colors in +// the images. +func (q* medianCutQuantizer) buildBucketMultiple(ms []image.Image) (bucket colorBucket) { + if len(ms) < 1 { + return colorBucket{} + } + + bounds := ms[0].Bounds() + size := (bounds.Max.X - bounds.Min.X) * (bounds.Max.Y - bounds.Min.Y) * 2 + sparseBucket := bpool.getBucket(size) + + for _, m := range ms { + for y := bounds.Min.Y; y < bounds.Max.Y; y++ { + for x := bounds.Min.X; x < bounds.Max.X; x++ { + priority := uint32(1) + if q.weighting != nil { + priority = q.weighting(m, x, y) + } + c := colorAt(m, x, y) + if c.A == 0 { + if !q.reserveTransparent { + q.reserveTransparent = true + } + continue + } + if priority != 0 { + index := int(c.R)<<16 | int(c.G)<<8 | int(c.B) + for i := 1; ; i++ { + p := &sparseBucket[index%size] + if p.p == 0 || p.RGBA == c { + *p = colorPriority{p.p + priority, c} + break + } + index += 1 + i + } + } + } + } + } + + bucket = sparseBucket[:0] + switch ms[0].(type) { + case *image.YCbCr: + for _, p := range sparseBucket { + if p.p != 0 { + r, g, b := color.YCbCrToRGB(p.R, p.G, p.B) + bucket = append(bucket, colorPriority{p.p, color.RGBA{r, g, b, p.A}}) + } + } + default: + for _, p := range sparseBucket { + if p.p != 0 { + bucket = append(bucket, p) + } + } + } + return +} + +// Quantize quantizes an image to a palette and returns the palette +func (q* medianCutQuantizer) quantize(p color.Palette, m image.Image) color.Palette { + // Package quantize offers an implementation of the draw.Quantize interface using an optimized Median Cut method, + // including advanced functionality for fine-grained control of color priority + bucket := q.buildBucketMultiple([]image.Image{m}) + defer bpool.Put(bucket) + return q.quantizeSlice(p, bucket) +} + +// QuantizeMultiple quantizes several images at once to a palette and returns +// the palette +func (q* medianCutQuantizer) quantizeMultiple(p color.Palette, m []image.Image) color.Palette { + bucket := q.buildBucketMultiple(m) + defer bpool.Put(bucket) + return q.quantizeSlice(p, bucket) +} |