summaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/crypto/internal/poly1305/sum_s390x.s
blob: aa9e0494c909d8ec768719524c5d46277859f670 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build gc && !purego
// +build gc,!purego

#include "textflag.h"

// This implementation of Poly1305 uses the vector facility (vx)
// to process up to 2 blocks (32 bytes) per iteration using an
// algorithm based on the one described in:
//
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
//
// This algorithm uses 5 26-bit limbs to represent a 130-bit
// value. These limbs are, for the most part, zero extended and
// placed into 64-bit vector register elements. Each vector
// register is 128-bits wide and so holds 2 of these elements.
// Using 26-bit limbs allows us plenty of headroom to accommodate
// accumulations before and after multiplication without
// overflowing either 32-bits (before multiplication) or 64-bits
// (after multiplication).
//
// In order to parallelise the operations required to calculate
// the sum we use two separate accumulators and then sum those
// in an extra final step. For compatibility with the generic
// implementation we perform this summation at the end of every
// updateVX call.
//
// To use two accumulators we must multiply the message blocks
// by r² rather than r. Only the final message block should be
// multiplied by r.
//
// Example:
//
// We want to calculate the sum (h) for a 64 byte message (m):
//
//   h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
//
// To do this we split the calculation into the even indices
// and odd indices of the message. These form our SIMD 'lanes':
//
//   h = m[ 0:16]r⁴ + m[32:48]r² +   <- lane 0
//       m[16:32]r³ + m[48:64]r      <- lane 1
//
// To calculate this iteratively we refactor so that both lanes
// are written in terms of r² and r:
//
//   h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
//       (m[16:32]r² + m[48:64])r    <- lane 1
//                ^             ^
//                |             coefficients for second iteration
//                coefficients for first iteration
//
// So in this case we would have two iterations. In the first
// both lanes are multiplied by r². In the second only the
// first lane is multiplied by r² and the second lane is
// instead multiplied by r. This gives use the odd and even
// powers of r that we need from the original equation.
//
// Notation:
//
//   h - accumulator
//   r - key
//   m - message
//
//   [a, b]       - SIMD register holding two 64-bit values
//   [a, b, c, d] - SIMD register holding four 32-bit values
//   xᵢ[n]        - limb n of variable x with bit width i
//
// Limbs are expressed in little endian order, so for 26-bit
// limbs x₂₆[4] will be the most significant limb and x₂₆[0]
// will be the least significant limb.

// masking constants
#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits

// expansion constants (see EXPAND macro)
#define EX0 V2
#define EX1 V3
#define EX2 V4

// key (r², r or 1 depending on context)
#define R_0 V5
#define R_1 V6
#define R_2 V7
#define R_3 V8
#define R_4 V9

// precalculated coefficients (5r², 5r or 0 depending on context)
#define R5_1 V10
#define R5_2 V11
#define R5_3 V12
#define R5_4 V13

// message block (m)
#define M_0 V14
#define M_1 V15
#define M_2 V16
#define M_3 V17
#define M_4 V18

// accumulator (h)
#define H_0 V19
#define H_1 V20
#define H_2 V21
#define H_3 V22
#define H_4 V23

// temporary registers (for short-lived values)
#define T_0 V24
#define T_1 V25
#define T_2 V26
#define T_3 V27
#define T_4 V28

GLOBL ·constants<>(SB), RODATA, $0x30
// EX0
DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
// EX1
DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
// EX2
DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d

// MULTIPLY multiplies each lane of f and g, partially reduced
// modulo 2¹³⁰ - 5. The result, h, consists of partial products
// in each lane that need to be reduced further to produce the
// final result.
//
//   h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
//
// Note that the multiplication by 5 of the high bits is
// achieved by precalculating the multiplication of four of the
// g coefficients by 5. These are g51-g54.
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
	VMLOF  f0, g0, h0        \
	VMLOF  f0, g3, h3        \
	VMLOF  f0, g1, h1        \
	VMLOF  f0, g4, h4        \
	VMLOF  f0, g2, h2        \
	VMLOF  f1, g54, T_0      \
	VMLOF  f1, g2, T_3       \
	VMLOF  f1, g0, T_1       \
	VMLOF  f1, g3, T_4       \
	VMLOF  f1, g1, T_2       \
	VMALOF f2, g53, h0, h0   \
	VMALOF f2, g1, h3, h3    \
	VMALOF f2, g54, h1, h1   \
	VMALOF f2, g2, h4, h4    \
	VMALOF f2, g0, h2, h2    \
	VMALOF f3, g52, T_0, T_0 \
	VMALOF f3, g0, T_3, T_3  \
	VMALOF f3, g53, T_1, T_1 \
	VMALOF f3, g1, T_4, T_4  \
	VMALOF f3, g54, T_2, T_2 \
	VMALOF f4, g51, h0, h0   \
	VMALOF f4, g54, h3, h3   \
	VMALOF f4, g52, h1, h1   \
	VMALOF f4, g0, h4, h4    \
	VMALOF f4, g53, h2, h2   \
	VAG    T_0, h0, h0       \
	VAG    T_3, h3, h3       \
	VAG    T_1, h1, h1       \
	VAG    T_4, h4, h4       \
	VAG    T_2, h2, h2

// REDUCE performs the following carry operations in four
// stages, as specified in Bernstein & Schwabe:
//
//   1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
//   2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
//   3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
//   4: h₂₆[3]->h₂₆[4]
//
// The result is that all of the limbs are limited to 26-bits
// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
//
// Note that although each limb is aligned at 26-bit intervals
// they may contain values that exceed 2²⁶ - 1, hence the need
// to carry the excess bits in each limb.
#define REDUCE(h0, h1, h2, h3, h4) \
	VESRLG $26, h0, T_0  \
	VESRLG $26, h3, T_1  \
	VN     MOD26, h0, h0 \
	VN     MOD26, h3, h3 \
	VAG    T_0, h1, h1   \
	VAG    T_1, h4, h4   \
	VESRLG $26, h1, T_2  \
	VESRLG $26, h4, T_3  \
	VN     MOD26, h1, h1 \
	VN     MOD26, h4, h4 \
	VESLG  $2, T_3, T_4  \
	VAG    T_3, T_4, T_4 \
	VAG    T_2, h2, h2   \
	VAG    T_4, h0, h0   \
	VESRLG $26, h2, T_0  \
	VESRLG $26, h0, T_1  \
	VN     MOD26, h2, h2 \
	VN     MOD26, h0, h0 \
	VAG    T_0, h3, h3   \
	VAG    T_1, h1, h1   \
	VESRLG $26, h3, T_2  \
	VN     MOD26, h3, h3 \
	VAG    T_2, h4, h4

// EXPAND splits the 128-bit little-endian values in0 and in1
// into 26-bit big-endian limbs and places the results into
// the first and second lane of d₂₆[0:4] respectively.
//
// The EX0, EX1 and EX2 constants are arrays of byte indices
// for permutation. The permutation both reverses the bytes
// in the input and ensures the bytes are copied into the
// destination limb ready to be shifted into their final
// position.
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
	VPERM  in0, in1, EX0, d0 \
	VPERM  in0, in1, EX1, d2 \
	VPERM  in0, in1, EX2, d4 \
	VESRLG $26, d0, d1       \
	VESRLG $30, d2, d3       \
	VESRLG $4, d2, d2        \
	VN     MOD26, d0, d0     \ // [in0₂₆[0], in1₂₆[0]]
	VN     MOD26, d3, d3     \ // [in0₂₆[3], in1₂₆[3]]
	VN     MOD26, d1, d1     \ // [in0₂₆[1], in1₂₆[1]]
	VN     MOD24, d4, d4     \ // [in0₂₆[4], in1₂₆[4]]
	VN     MOD26, d2, d2     // [in0₂₆[2], in1₂₆[2]]

// func updateVX(state *macState, msg []byte)
TEXT ·updateVX(SB), NOSPLIT, $0
	MOVD state+0(FP), R1
	LMG  msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len

	// load EX0, EX1 and EX2
	MOVD $·constants<>(SB), R5
	VLM  (R5), EX0, EX2

	// generate masks
	VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
	VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]

	// load h (accumulator) and r (key) from state
	VZERO T_1               // [0, 0]
	VL    0(R1), T_0        // [h₆₄[0], h₆₄[1]]
	VLEG  $0, 16(R1), T_1   // [h₆₄[2], 0]
	VL    24(R1), T_2       // [r₆₄[0], r₆₄[1]]
	VPDI  $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
	VPDI  $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]

	// unpack h and r into 26-bit limbs
	// note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
	VN     MOD26, T_3, H_0            // [h₂₆[0], r₂₆[0]]
	VZERO  H_1                        // [0, 0]
	VZERO  H_3                        // [0, 0]
	VGMG   $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
	VESLG  $24, T_1, T_1              // [h₆₄[2]<<24, 0]
	VERIMG $-26&63, T_3, MOD26, H_1   // [h₂₆[1], r₂₆[1]]
	VESRLG $+52&63, T_3, H_2          // [h₂₆[2], r₂₆[2]] - low 12 bits only
	VERIMG $-14&63, T_4, MOD26, H_3   // [h₂₆[1], r₂₆[1]]
	VESRLG $40, T_4, H_4              // [h₂₆[4], r₂₆[4]] - low 24 bits only
	VERIMG $+12&63, T_4, T_0, H_2     // [h₂₆[2], r₂₆[2]] - complete
	VO     T_1, H_4, H_4              // [h₂₆[4], r₂₆[4]] - complete

	// replicate r across all 4 vector elements
	VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
	VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
	VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
	VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
	VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]

	// zero out lane 1 of h
	VLEIG $1, $0, H_0 // [h₂₆[0], 0]
	VLEIG $1, $0, H_1 // [h₂₆[1], 0]
	VLEIG $1, $0, H_2 // [h₂₆[2], 0]
	VLEIG $1, $0, H_3 // [h₂₆[3], 0]
	VLEIG $1, $0, H_4 // [h₂₆[4], 0]

	// calculate 5r (ignore least significant limb)
	VREPIF $5, T_0
	VMLF   T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
	VMLF   T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
	VMLF   T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
	VMLF   T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]

	// skip r² calculation if we are only calculating one block
	CMPBLE R3, $16, skip

	// calculate r²
	MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
	REDUCE(M_0, M_1, M_2, M_3, M_4)
	VGBM   $0x0f0f, T_0
	VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
	VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
	VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
	VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
	VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]

	// calculate 5r² (ignore least significant limb)
	VREPIF $5, T_0
	VMLF   T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
	VMLF   T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
	VMLF   T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
	VMLF   T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]

loop:
	CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients

	// load next 2 blocks from message
	VLM (R2), T_0, T_1

	// update message slice
	SUB  $32, R3
	MOVD $32(R2), R2

	// unpack message blocks into 26-bit big-endian limbs
	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)

	// add 2¹²⁸ to each message block value
	VLEIB $4, $1, M_4
	VLEIB $12, $1, M_4

multiply:
	// accumulate the incoming message
	VAG H_0, M_0, M_0
	VAG H_3, M_3, M_3
	VAG H_1, M_1, M_1
	VAG H_4, M_4, M_4
	VAG H_2, M_2, M_2

	// multiply the accumulator by the key coefficient
	MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)

	// carry and partially reduce the partial products
	REDUCE(H_0, H_1, H_2, H_3, H_4)

	CMPBNE R3, $0, loop

finish:
	// sum lane 0 and lane 1 and put the result in lane 1
	VZERO  T_0
	VSUMQG H_0, T_0, H_0
	VSUMQG H_3, T_0, H_3
	VSUMQG H_1, T_0, H_1
	VSUMQG H_4, T_0, H_4
	VSUMQG H_2, T_0, H_2

	// reduce again after summation
	// TODO(mundaym): there might be a more efficient way to do this
	// now that we only have 1 active lane. For example, we could
	// simultaneously pack the values as we reduce them.
	REDUCE(H_0, H_1, H_2, H_3, H_4)

	// carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
	// TODO(mundaym): in testing this final carry was unnecessary.
	// Needs a proof before it can be removed though.
	VESRLG $26, H_1, T_1
	VN     MOD26, H_1, H_1
	VAQ    T_1, H_2, H_2
	VESRLG $26, H_2, T_2
	VN     MOD26, H_2, H_2
	VAQ    T_2, H_3, H_3
	VESRLG $26, H_3, T_3
	VN     MOD26, H_3, H_3
	VAQ    T_3, H_4, H_4

	// h is now < 2(2¹³⁰ - 5)
	// Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
	VESLG $26, H_1, H_1
	VESLG $26, H_3, H_3
	VO    H_0, H_1, H_0
	VO    H_2, H_3, H_2
	VESLG $4, H_2, H_2
	VLEIB $7, $48, H_1
	VSLB  H_1, H_2, H_2
	VO    H_0, H_2, H_0
	VLEIB $7, $104, H_1
	VSLB  H_1, H_4, H_3
	VO    H_3, H_0, H_0
	VLEIB $7, $24, H_1
	VSRLB H_1, H_4, H_1

	// update state
	VSTEG $1, H_0, 0(R1)
	VSTEG $0, H_0, 8(R1)
	VSTEG $1, H_1, 16(R1)
	RET

b2:  // 2 or fewer blocks remaining
	CMPBLE R3, $16, b1

	// Load the 2 remaining blocks (17-32 bytes remaining).
	MOVD $-17(R3), R0    // index of final byte to load modulo 16
	VL   (R2), T_0       // load full 16 byte block
	VLL  R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes

	// The Poly1305 algorithm requires that a 1 bit be appended to
	// each message block. If the final block is less than 16 bytes
	// long then it is easiest to insert the 1 before the message
	// block is split into 26-bit limbs. If, on the other hand, the
	// final message block is 16 bytes long then we append the 1 bit
	// after expansion as normal.
	MOVBZ  $1, R0
	MOVD   $-16(R3), R3   // index of byte in last block to insert 1 at (could be 16)
	CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
	VLVGB  R3, R0, T_1    // insert 1 into the byte at index R3

	// Split both blocks into 26-bit limbs in the appropriate lanes.
	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)

	// Append a 1 byte to the end of the second to last block.
	VLEIB $4, $1, M_4

	// Append a 1 byte to the end of the last block only if it is a
	// full 16 byte block.
	CMPBNE R3, $16, 2(PC)
	VLEIB  $12, $1, M_4

	// Finally, set up the coefficients for the final multiplication.
	// We have previously saved r and 5r in the 32-bit even indexes
	// of the R_[0-4] and R5_[1-4] coefficient registers.
	//
	// We want lane 0 to be multiplied by r² so that can be kept the
	// same. We want lane 1 to be multiplied by r so we need to move
	// the saved r value into the 32-bit odd index in lane 1 by
	// rotating the 64-bit lane by 32.
	VGBM   $0x00ff, T_0         // [0, 0xffffffffffffffff] - mask lane 1 only
	VERIMG $32, R_0, T_0, R_0   // [_,  r²₂₆[0], _,  r₂₆[0]]
	VERIMG $32, R_1, T_0, R_1   // [_,  r²₂₆[1], _,  r₂₆[1]]
	VERIMG $32, R_2, T_0, R_2   // [_,  r²₂₆[2], _,  r₂₆[2]]
	VERIMG $32, R_3, T_0, R_3   // [_,  r²₂₆[3], _,  r₂₆[3]]
	VERIMG $32, R_4, T_0, R_4   // [_,  r²₂₆[4], _,  r₂₆[4]]
	VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
	VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
	VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
	VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]

	MOVD $0, R3
	BR   multiply

skip:
	CMPBEQ R3, $0, finish

b1:  // 1 block remaining

	// Load the final block (1-16 bytes). This will be placed into
	// lane 0.
	MOVD $-1(R3), R0
	VLL  R0, (R2), T_0 // pad to 16 bytes with zeros

	// The Poly1305 algorithm requires that a 1 bit be appended to
	// each message block. If the final block is less than 16 bytes
	// long then it is easiest to insert the 1 before the message
	// block is split into 26-bit limbs. If, on the other hand, the
	// final message block is 16 bytes long then we append the 1 bit
	// after expansion as normal.
	MOVBZ  $1, R0
	CMPBEQ R3, $16, 2(PC)
	VLVGB  R3, R0, T_0

	// Set the message block in lane 1 to the value 0 so that it
	// can be accumulated without affecting the final result.
	VZERO T_1

	// Split the final message block into 26-bit limbs in lane 0.
	// Lane 1 will be contain 0.
	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)

	// Append a 1 byte to the end of the last block only if it is a
	// full 16 byte block.
	CMPBNE R3, $16, 2(PC)
	VLEIB  $4, $1, M_4

	// We have previously saved r and 5r in the 32-bit even indexes
	// of the R_[0-4] and R5_[1-4] coefficient registers.
	//
	// We want lane 0 to be multiplied by r so we need to move the
	// saved r value into the 32-bit odd index in lane 0. We want
	// lane 1 to be set to the value 1. This makes multiplication
	// a no-op. We do this by setting lane 1 in every register to 0
	// and then just setting the 32-bit index 3 in R_0 to 1.
	VZERO T_0
	MOVD  $0, R0
	MOVD  $0x10111213, R12
	VLVGP R12, R0, T_1         // [_, 0x10111213, _, 0x00000000]
	VPERM T_0, R_0, T_1, R_0   // [_,  r₂₆[0], _, 0]
	VPERM T_0, R_1, T_1, R_1   // [_,  r₂₆[1], _, 0]
	VPERM T_0, R_2, T_1, R_2   // [_,  r₂₆[2], _, 0]
	VPERM T_0, R_3, T_1, R_3   // [_,  r₂₆[3], _, 0]
	VPERM T_0, R_4, T_1, R_4   // [_,  r₂₆[4], _, 0]
	VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
	VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
	VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
	VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]

	// Set the value of lane 1 to be 1.
	VLEIF $3, $1, R_0 // [_,  r₂₆[0], _, 1]

	MOVD $0, R3
	BR   multiply