// Copyright 2015 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE4 version of some encoding functions. // // Author: Skal (pascal.massimino@gmail.com) #include "dsp_dsp.h" #if defined(WEBP_USE_SSE41) #include #include // for abs() #include "dsp_common_sse2.h" #include "enc_vp8i_enc.h" //------------------------------------------------------------------------------ // Compute susceptibility based on DCT-coeff histograms. static void CollectHistogram_SSE41(const uint8_t* ref, const uint8_t* pred, int start_block, int end_block, VP8Histogram* const histo) { const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); int j; int distribution[MAX_COEFF_THRESH + 1] = { 0 }; for (j = start_block; j < end_block; ++j) { int16_t out[16]; int k; VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); // Convert coefficients to bin (within out[]). { // Load. const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); // v = abs(out) >> 3 const __m128i abs0 = _mm_abs_epi16(out0); const __m128i abs1 = _mm_abs_epi16(out1); const __m128i v0 = _mm_srai_epi16(abs0, 3); const __m128i v1 = _mm_srai_epi16(abs1, 3); // bin = min(v, MAX_COEFF_THRESH) const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); // Store. _mm_storeu_si128((__m128i*)&out[0], bin0); _mm_storeu_si128((__m128i*)&out[8], bin1); } // Convert coefficients to bin. for (k = 0; k < 16; ++k) { ++distribution[out[k]]; } } VP8SetHistogramData(distribution, histo); } //------------------------------------------------------------------------------ // Texture distortion // // We try to match the spectral content (weighted) between source and // reconstructed samples. // Hadamard transform // Returns the weighted sum of the absolute value of transformed coefficients. // w[] contains a row-major 4 by 4 symmetric matrix. static int TTransform_SSE41(const uint8_t* inA, const uint8_t* inB, const uint16_t* const w) { int32_t sum[4]; __m128i tmp_0, tmp_1, tmp_2, tmp_3; // Load and combine inputs. { const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]); const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]); const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]); // In SSE4.1, with gcc 4.8 at least (maybe other versions), // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump // of inA and inB, _mm_loadl_epi64 is still used not to have an out of // bound read. const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]); const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]); const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]); const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); // Combine inA and inB (we'll do two transforms in parallel). const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); tmp_0 = _mm_cvtepu8_epi16(inAB_0); tmp_1 = _mm_cvtepu8_epi16(inAB_1); tmp_2 = _mm_cvtepu8_epi16(inAB_2); tmp_3 = _mm_cvtepu8_epi16(inAB_3); // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 } // Vertical pass first to avoid a transpose (vertical and horizontal passes // are commutative because w/kWeightY is symmetric) and subsequent transpose. { // Calculate a and b (two 4x4 at once). const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); const __m128i b0 = _mm_add_epi16(a0, a1); const __m128i b1 = _mm_add_epi16(a3, a2); const __m128i b2 = _mm_sub_epi16(a3, a2); const __m128i b3 = _mm_sub_epi16(a0, a1); // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 // Transpose the two 4x4. VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); } // Horizontal pass and difference of weighted sums. { // Load all inputs. const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); // Calculate a and b (two 4x4 at once). const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); const __m128i b0 = _mm_add_epi16(a0, a1); const __m128i b1 = _mm_add_epi16(a3, a2); const __m128i b2 = _mm_sub_epi16(a3, a2); const __m128i b3 = _mm_sub_epi16(a0, a1); // Separate the transforms of inA and inB. __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); A_b0 = _mm_abs_epi16(A_b0); A_b2 = _mm_abs_epi16(A_b2); B_b0 = _mm_abs_epi16(B_b0); B_b2 = _mm_abs_epi16(B_b2); // weighted sums A_b0 = _mm_madd_epi16(A_b0, w_0); A_b2 = _mm_madd_epi16(A_b2, w_8); B_b0 = _mm_madd_epi16(B_b0, w_0); B_b2 = _mm_madd_epi16(B_b2, w_8); A_b0 = _mm_add_epi32(A_b0, A_b2); B_b0 = _mm_add_epi32(B_b0, B_b2); // difference of weighted sums A_b2 = _mm_sub_epi32(A_b0, B_b0); _mm_storeu_si128((__m128i*)&sum[0], A_b2); } return sum[0] + sum[1] + sum[2] + sum[3]; } static int Disto4x4_SSE41(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { const int diff_sum = TTransform_SSE41(a, b, w); return abs(diff_sum) >> 5; } static int Disto16x16_SSE41(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { int D = 0; int x, y; for (y = 0; y < 16 * BPS; y += 4 * BPS) { for (x = 0; x < 16; x += 4) { D += Disto4x4_SSE41(a + x + y, b + x + y, w); } } return D; } //------------------------------------------------------------------------------ // Quantization // // Generates a pshufb constant for shuffling 16b words. #define PSHUFB_CST(A,B,C,D,E,F,G,H) \ _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \ 2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \ 2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \ 2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0) static WEBP_INLINE int DoQuantizeBlock_SSE41(int16_t in[16], int16_t out[16], const uint16_t* const sharpen, const VP8Matrix* const mtx) { const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); const __m128i zero = _mm_setzero_si128(); __m128i out0, out8; __m128i packed_out; // Load all inputs. __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); // coeff = abs(in) __m128i coeff0 = _mm_abs_epi16(in0); __m128i coeff8 = _mm_abs_epi16(in8); // coeff = abs(in) + sharpen if (sharpen != NULL) { const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); coeff0 = _mm_add_epi16(coeff0, sharpen0); coeff8 = _mm_add_epi16(coeff8, sharpen8); } // out = (coeff * iQ + B) >> QFIX { // doing calculations with 32b precision (QFIX=17) // out = (coeff * iQ) const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); // out = (coeff * iQ + B) const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); out_00 = _mm_add_epi32(out_00, bias_00); out_04 = _mm_add_epi32(out_04, bias_04); out_08 = _mm_add_epi32(out_08, bias_08); out_12 = _mm_add_epi32(out_12, bias_12); // out = QUANTDIV(coeff, iQ, B, QFIX) out_00 = _mm_srai_epi32(out_00, QFIX); out_04 = _mm_srai_epi32(out_04, QFIX); out_08 = _mm_srai_epi32(out_08, QFIX); out_12 = _mm_srai_epi32(out_12, QFIX); // pack result as 16b out0 = _mm_packs_epi32(out_00, out_04); out8 = _mm_packs_epi32(out_08, out_12); // if (coeff > 2047) coeff = 2047 out0 = _mm_min_epi16(out0, max_coeff_2047); out8 = _mm_min_epi16(out8, max_coeff_2047); } // put sign back out0 = _mm_sign_epi16(out0, in0); out8 = _mm_sign_epi16(out8, in8); // in = out * Q in0 = _mm_mullo_epi16(out0, q0); in8 = _mm_mullo_epi16(out8, q8); _mm_storeu_si128((__m128i*)&in[0], in0); _mm_storeu_si128((__m128i*)&in[8], in8); // zigzag the output before storing it. The re-ordering is: // 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15 // There's only two misplaced entries ([8] and [7]) that are crossing the // reg's boundaries. // We use pshufb instead of pshuflo/pshufhi. { const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6); const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1); const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo); const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7 const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7); const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1); const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi); const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8 const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8); const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7); _mm_storeu_si128((__m128i*)&out[0], out_z0); _mm_storeu_si128((__m128i*)&out[8], out_z8); packed_out = _mm_packs_epi16(out_z0, out_z8); } // detect if all 'out' values are zeroes or not return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); } #undef PSHUFB_CST static int QuantizeBlock_SSE41(int16_t in[16], int16_t out[16], const VP8Matrix* const mtx) { return DoQuantizeBlock_SSE41(in, out, &mtx->sharpen_[0], mtx); } static int QuantizeBlockWHT_SSE41(int16_t in[16], int16_t out[16], const VP8Matrix* const mtx) { return DoQuantizeBlock_SSE41(in, out, NULL, mtx); } static int Quantize2Blocks_SSE41(int16_t in[32], int16_t out[32], const VP8Matrix* const mtx) { int nz; const uint16_t* const sharpen = &mtx->sharpen_[0]; nz = DoQuantizeBlock_SSE41(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; nz |= DoQuantizeBlock_SSE41(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; return nz; } //------------------------------------------------------------------------------ // Entry point extern void VP8EncDspInitSSE41(void); WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) { VP8CollectHistogram = CollectHistogram_SSE41; VP8EncQuantizeBlock = QuantizeBlock_SSE41; VP8EncQuantize2Blocks = Quantize2Blocks_SSE41; VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE41; VP8TDisto4x4 = Disto4x4_SSE41; VP8TDisto16x16 = Disto16x16_SSE41; } #else // !WEBP_USE_SSE41 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41) #endif // WEBP_USE_SSE41