From 53cafa9f3d0c8be33821fc7338b1da97e91d9cc6 Mon Sep 17 00:00:00 2001 From: Benau Date: Wed, 25 Aug 2021 04:32:50 +0800 Subject: Convert .tgs with go libraries (and cgo) (telegram) (#1569) This commit adds support for go/cgo tgs conversion when building with the -tags `cgo` The default binaries are still "pure" go and uses the old way of converting. * Move lottie_convert.py conversion code to its own file * Add optional libtgsconverter * Update vendor * Apply suggestions from code review * Update bridge/helper/libtgsconverter.go Co-authored-by: Wim --- .../Benau/go_rlottie/vector_vinterpolator.cpp | 124 +++++++++++++++++++++ 1 file changed, 124 insertions(+) create mode 100644 vendor/github.com/Benau/go_rlottie/vector_vinterpolator.cpp (limited to 'vendor/github.com/Benau/go_rlottie/vector_vinterpolator.cpp') diff --git a/vendor/github.com/Benau/go_rlottie/vector_vinterpolator.cpp b/vendor/github.com/Benau/go_rlottie/vector_vinterpolator.cpp new file mode 100644 index 00000000..89e462a1 --- /dev/null +++ b/vendor/github.com/Benau/go_rlottie/vector_vinterpolator.cpp @@ -0,0 +1,124 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "vector_vinterpolator.h" +#include + +V_BEGIN_NAMESPACE + +#define NEWTON_ITERATIONS 4 +#define NEWTON_MIN_SLOPE 0.02 +#define SUBDIVISION_PRECISION 0.0000001 +#define SUBDIVISION_MAX_ITERATIONS 10 + +const float VInterpolator::kSampleStepSize = + 1.0f / float(VInterpolator::kSplineTableSize - 1); + +void VInterpolator::init(float aX1, float aY1, float aX2, float aY2) +{ + mX1 = aX1; + mY1 = aY1; + mX2 = aX2; + mY2 = aY2; + + if (mX1 != mY1 || mX2 != mY2) CalcSampleValues(); +} + +/*static*/ float VInterpolator::CalcBezier(float aT, float aA1, float aA2) +{ + // use Horner's scheme to evaluate the Bezier polynomial + return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; +} + +void VInterpolator::CalcSampleValues() +{ + for (int i = 0; i < kSplineTableSize; ++i) { + mSampleValues[i] = CalcBezier(float(i) * kSampleStepSize, mX1, mX2); + } +} + +float VInterpolator::GetSlope(float aT, float aA1, float aA2) +{ + return 3.0f * A(aA1, aA2) * aT * aT + 2.0f * B(aA1, aA2) * aT + C(aA1); +} + +float VInterpolator::value(float aX) const +{ + if (mX1 == mY1 && mX2 == mY2) return aX; + + return CalcBezier(GetTForX(aX), mY1, mY2); +} + +float VInterpolator::GetTForX(float aX) const +{ + // Find interval where t lies + float intervalStart = 0.0; + const float* currentSample = &mSampleValues[1]; + const float* const lastSample = &mSampleValues[kSplineTableSize - 1]; + for (; currentSample != lastSample && *currentSample <= aX; + ++currentSample) { + intervalStart += kSampleStepSize; + } + --currentSample; // t now lies between *currentSample and *currentSample+1 + + // Interpolate to provide an initial guess for t + float dist = + (aX - *currentSample) / (*(currentSample + 1) - *currentSample); + float guessForT = intervalStart + dist * kSampleStepSize; + + // Check the slope to see what strategy to use. If the slope is too small + // Newton-Raphson iteration won't converge on a root so we use bisection + // instead. + float initialSlope = GetSlope(guessForT, mX1, mX2); + if (initialSlope >= NEWTON_MIN_SLOPE) { + return NewtonRaphsonIterate(aX, guessForT); + } else if (initialSlope == 0.0) { + return guessForT; + } else { + return BinarySubdivide(aX, intervalStart, + intervalStart + kSampleStepSize); + } +} + +float VInterpolator::NewtonRaphsonIterate(float aX, float aGuessT) const +{ + // Refine guess with Newton-Raphson iteration + for (int i = 0; i < NEWTON_ITERATIONS; ++i) { + // We're trying to find where f(t) = aX, + // so we're actually looking for a root for: CalcBezier(t) - aX + float currentX = CalcBezier(aGuessT, mX1, mX2) - aX; + float currentSlope = GetSlope(aGuessT, mX1, mX2); + + if (currentSlope == 0.0) return aGuessT; + + aGuessT -= currentX / currentSlope; + } + + return aGuessT; +} + +float VInterpolator::BinarySubdivide(float aX, float aA, float aB) const +{ + float currentX; + float currentT; + int i = 0; + + do { + currentT = aA + (aB - aA) / 2.0f; + currentX = CalcBezier(currentT, mX1, mX2) - aX; + + if (currentX > 0.0) { + aB = currentT; + } else { + aA = currentT; + } + } while (fabs(currentX) > SUBDIVISION_PRECISION && + ++i < SUBDIVISION_MAX_ITERATIONS); + + return currentT; +} + +V_END_NAMESPACE -- cgit v1.2.3