diff options
Diffstat (limited to 'vendor/github.com/skip2/go-qrcode/reedsolomon')
3 files changed, 0 insertions, 676 deletions
diff --git a/vendor/github.com/skip2/go-qrcode/reedsolomon/gf2_8.go b/vendor/github.com/skip2/go-qrcode/reedsolomon/gf2_8.go deleted file mode 100644 index 6a7003f7..00000000 --- a/vendor/github.com/skip2/go-qrcode/reedsolomon/gf2_8.go +++ /dev/null @@ -1,387 +0,0 @@ -// go-qrcode -// Copyright 2014 Tom Harwood - -package reedsolomon - -// Addition, subtraction, multiplication, and division in GF(2^8). -// Operations are performed modulo x^8 + x^4 + x^3 + x^2 + 1. - -// http://en.wikipedia.org/wiki/Finite_field_arithmetic - -import "log" - -const ( - gfZero = gfElement(0) - gfOne = gfElement(1) -) - -var ( - gfExpTable = [256]gfElement{ - /* 0 - 9 */ 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, - /* 10 - 19 */ 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, - /* 20 - 29 */ 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, - /* 30 - 39 */ 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, - /* 40 - 49 */ 106, 212, 181, 119, 238, 193, 159, 35, 70, 140, - /* 50 - 59 */ 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, - /* 60 - 69 */ 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, - /* 70 - 79 */ 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, - /* 80 - 89 */ 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, - /* 90 - 99 */ 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, - /* 100 - 109 */ 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, - /* 110 - 119 */ 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, - /* 120 - 129 */ 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, - /* 130 - 139 */ 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, - /* 140 - 149 */ 132, 21, 42, 84, 168, 77, 154, 41, 82, 164, - /* 150 - 159 */ 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, - /* 160 - 169 */ 230, 209, 191, 99, 198, 145, 63, 126, 252, 229, - /* 170 - 179 */ 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, - /* 180 - 189 */ 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, - /* 190 - 199 */ 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, - /* 200 - 209 */ 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, - /* 210 - 219 */ 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, - /* 220 - 229 */ 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, - /* 230 - 239 */ 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, - /* 240 - 249 */ 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, - /* 250 - 255 */ 108, 216, 173, 71, 142, 1} - - gfLogTable = [256]int{ - /* 0 - 9 */ -1, 0, 1, 25, 2, 50, 26, 198, 3, 223, - /* 10 - 19 */ 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, - /* 20 - 29 */ 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, - /* 30 - 39 */ 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, - /* 40 - 49 */ 53, 147, 142, 218, 240, 18, 130, 69, 29, 181, - /* 50 - 59 */ 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, - /* 60 - 69 */ 77, 228, 114, 166, 6, 191, 139, 98, 102, 221, - /* 70 - 79 */ 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, - /* 80 - 89 */ 54, 208, 148, 206, 143, 150, 219, 189, 241, 210, - /* 90 - 99 */ 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, - /* 100 - 109 */ 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, - /* 110 - 119 */ 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, - /* 120 - 129 */ 78, 212, 229, 172, 115, 243, 167, 87, 7, 112, - /* 130 - 139 */ 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, - /* 140 - 149 */ 49, 197, 254, 24, 227, 165, 153, 119, 38, 184, - /* 150 - 159 */ 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, - /* 160 - 169 */ 55, 63, 209, 91, 149, 188, 207, 205, 144, 135, - /* 170 - 179 */ 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, - /* 180 - 189 */ 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, - /* 190 - 199 */ 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, - /* 200 - 209 */ 196, 23, 73, 236, 127, 12, 111, 246, 108, 161, - /* 210 - 219 */ 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, - /* 220 - 229 */ 187, 204, 62, 90, 203, 89, 95, 176, 156, 169, - /* 230 - 239 */ 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, - /* 240 - 249 */ 79, 174, 213, 233, 230, 231, 173, 232, 116, 214, - /* 250 - 255 */ 244, 234, 168, 80, 88, 175} -) - -// gfElement is an element in GF(2^8). -type gfElement uint8 - -// newGFElement creates and returns a new gfElement. -func newGFElement(data byte) gfElement { - return gfElement(data) -} - -// gfAdd returns a + b. -func gfAdd(a, b gfElement) gfElement { - return a ^ b -} - -// gfSub returns a - b. -// -// Note addition is equivalent to subtraction in GF(2). -func gfSub(a, b gfElement) gfElement { - return a ^ b -} - -// gfMultiply returns a * b. -func gfMultiply(a, b gfElement) gfElement { - if a == gfZero || b == gfZero { - return gfZero - } - - return gfExpTable[(gfLogTable[a]+gfLogTable[b])%255] -} - -// gfDivide returns a / b. -// -// Divide by zero results in a panic. -func gfDivide(a, b gfElement) gfElement { - if a == gfZero { - return gfZero - } else if b == gfZero { - log.Panicln("Divide by zero") - } - - return gfMultiply(a, gfInverse(b)) -} - -// gfInverse returns the multiplicative inverse of a, a^-1. -// -// a * a^-1 = 1 -func gfInverse(a gfElement) gfElement { - if a == gfZero { - log.Panicln("No multiplicative inverse of 0") - } - - return gfExpTable[255-gfLogTable[a]] -} - -// a^i | bits | polynomial | decimal -// -------------------------------------------------------------------------- -// 0 | 000000000 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 0 -// a^0 | 000000001 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 1 -// a^1 | 000000010 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 2 -// a^2 | 000000100 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 4 -// a^3 | 000001000 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 8 -// a^4 | 000010000 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 16 -// a^5 | 000100000 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 32 -// a^6 | 001000000 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 64 -// a^7 | 010000000 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 128 -// a^8 | 000011101 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 29 -// a^9 | 000111010 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 58 -// a^10 | 001110100 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 116 -// a^11 | 011101000 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 232 -// a^12 | 011001101 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 205 -// a^13 | 010000111 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 135 -// a^14 | 000010011 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 19 -// a^15 | 000100110 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 38 -// a^16 | 001001100 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 76 -// a^17 | 010011000 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 152 -// a^18 | 000101101 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 45 -// a^19 | 001011010 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 90 -// a^20 | 010110100 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 180 -// a^21 | 001110101 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 117 -// a^22 | 011101010 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 234 -// a^23 | 011001001 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 201 -// a^24 | 010001111 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 143 -// a^25 | 000000011 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 3 -// a^26 | 000000110 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 6 -// a^27 | 000001100 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 12 -// a^28 | 000011000 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 24 -// a^29 | 000110000 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 48 -// a^30 | 001100000 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 96 -// a^31 | 011000000 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 192 -// a^32 | 010011101 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 157 -// a^33 | 000100111 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 39 -// a^34 | 001001110 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 78 -// a^35 | 010011100 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 156 -// a^36 | 000100101 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 37 -// a^37 | 001001010 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 74 -// a^38 | 010010100 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 148 -// a^39 | 000110101 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 53 -// a^40 | 001101010 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 106 -// a^41 | 011010100 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 212 -// a^42 | 010110101 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 181 -// a^43 | 001110111 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 119 -// a^44 | 011101110 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 238 -// a^45 | 011000001 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 193 -// a^46 | 010011111 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 159 -// a^47 | 000100011 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 35 -// a^48 | 001000110 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 70 -// a^49 | 010001100 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 140 -// a^50 | 000000101 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 5 -// a^51 | 000001010 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 10 -// a^52 | 000010100 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 20 -// a^53 | 000101000 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 40 -// a^54 | 001010000 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 80 -// a^55 | 010100000 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 160 -// a^56 | 001011101 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 93 -// a^57 | 010111010 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 186 -// a^58 | 001101001 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 105 -// a^59 | 011010010 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 210 -// a^60 | 010111001 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 185 -// a^61 | 001101111 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 111 -// a^62 | 011011110 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 222 -// a^63 | 010100001 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 161 -// a^64 | 001011111 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 95 -// a^65 | 010111110 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 190 -// a^66 | 001100001 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 97 -// a^67 | 011000010 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 194 -// a^68 | 010011001 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 153 -// a^69 | 000101111 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 47 -// a^70 | 001011110 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 94 -// a^71 | 010111100 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 188 -// a^72 | 001100101 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 101 -// a^73 | 011001010 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 202 -// a^74 | 010001001 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 137 -// a^75 | 000001111 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 15 -// a^76 | 000011110 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 30 -// a^77 | 000111100 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 60 -// a^78 | 001111000 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 120 -// a^79 | 011110000 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 240 -// a^80 | 011111101 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 253 -// a^81 | 011100111 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 231 -// a^82 | 011010011 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 211 -// a^83 | 010111011 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 187 -// a^84 | 001101011 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 107 -// a^85 | 011010110 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 214 -// a^86 | 010110001 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 177 -// a^87 | 001111111 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 127 -// a^88 | 011111110 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 254 -// a^89 | 011100001 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 225 -// a^90 | 011011111 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 223 -// a^91 | 010100011 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 163 -// a^92 | 001011011 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 91 -// a^93 | 010110110 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 182 -// a^94 | 001110001 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 113 -// a^95 | 011100010 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 226 -// a^96 | 011011001 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 217 -// a^97 | 010101111 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 175 -// a^98 | 001000011 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 67 -// a^99 | 010000110 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 134 -// a^100 | 000010001 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 17 -// a^101 | 000100010 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 34 -// a^102 | 001000100 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 68 -// a^103 | 010001000 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 136 -// a^104 | 000001101 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 13 -// a^105 | 000011010 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 26 -// a^106 | 000110100 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 52 -// a^107 | 001101000 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 104 -// a^108 | 011010000 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 208 -// a^109 | 010111101 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 189 -// a^110 | 001100111 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 103 -// a^111 | 011001110 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 206 -// a^112 | 010000001 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 129 -// a^113 | 000011111 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 31 -// a^114 | 000111110 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 62 -// a^115 | 001111100 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 124 -// a^116 | 011111000 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 248 -// a^117 | 011101101 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 237 -// a^118 | 011000111 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 199 -// a^119 | 010010011 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 147 -// a^120 | 000111011 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 59 -// a^121 | 001110110 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 118 -// a^122 | 011101100 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 236 -// a^123 | 011000101 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 197 -// a^124 | 010010111 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 151 -// a^125 | 000110011 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 51 -// a^126 | 001100110 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 102 -// a^127 | 011001100 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 204 -// a^128 | 010000101 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 133 -// a^129 | 000010111 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 23 -// a^130 | 000101110 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 46 -// a^131 | 001011100 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 92 -// a^132 | 010111000 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 184 -// a^133 | 001101101 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 109 -// a^134 | 011011010 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 218 -// a^135 | 010101001 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 169 -// a^136 | 001001111 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 79 -// a^137 | 010011110 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 158 -// a^138 | 000100001 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 33 -// a^139 | 001000010 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 66 -// a^140 | 010000100 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 132 -// a^141 | 000010101 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 21 -// a^142 | 000101010 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 42 -// a^143 | 001010100 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 84 -// a^144 | 010101000 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 168 -// a^145 | 001001101 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 77 -// a^146 | 010011010 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 154 -// a^147 | 000101001 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 41 -// a^148 | 001010010 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 82 -// a^149 | 010100100 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 164 -// a^150 | 001010101 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 85 -// a^151 | 010101010 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 170 -// a^152 | 001001001 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 73 -// a^153 | 010010010 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 146 -// a^154 | 000111001 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 57 -// a^155 | 001110010 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 114 -// a^156 | 011100100 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 228 -// a^157 | 011010101 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 213 -// a^158 | 010110111 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 183 -// a^159 | 001110011 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 115 -// a^160 | 011100110 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 230 -// a^161 | 011010001 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 209 -// a^162 | 010111111 | 0x^8 1x^7 0x^6 1x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 191 -// a^163 | 001100011 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 99 -// a^164 | 011000110 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 198 -// a^165 | 010010001 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 145 -// a^166 | 000111111 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 63 -// a^167 | 001111110 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 1x^2 1x^1 0x^0 | 126 -// a^168 | 011111100 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 252 -// a^169 | 011100101 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 229 -// a^170 | 011010111 | 0x^8 1x^7 1x^6 0x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 215 -// a^171 | 010110011 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 179 -// a^172 | 001111011 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 123 -// a^173 | 011110110 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 246 -// a^174 | 011110001 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 241 -// a^175 | 011111111 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 1x^2 1x^1 1x^0 | 255 -// a^176 | 011100011 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 227 -// a^177 | 011011011 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 219 -// a^178 | 010101011 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 171 -// a^179 | 001001011 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 75 -// a^180 | 010010110 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 150 -// a^181 | 000110001 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 49 -// a^182 | 001100010 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 98 -// a^183 | 011000100 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 196 -// a^184 | 010010101 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 149 -// a^185 | 000110111 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 55 -// a^186 | 001101110 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 110 -// a^187 | 011011100 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 220 -// a^188 | 010100101 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 165 -// a^189 | 001010111 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 87 -// a^190 | 010101110 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 174 -// a^191 | 001000001 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 65 -// a^192 | 010000010 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 130 -// a^193 | 000011001 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 25 -// a^194 | 000110010 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 50 -// a^195 | 001100100 | 0x^8 0x^7 1x^6 1x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 100 -// a^196 | 011001000 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 200 -// a^197 | 010001101 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 141 -// a^198 | 000000111 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 7 -// a^199 | 000001110 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 14 -// a^200 | 000011100 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 1x^2 0x^1 0x^0 | 28 -// a^201 | 000111000 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 56 -// a^202 | 001110000 | 0x^8 0x^7 1x^6 1x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 112 -// a^203 | 011100000 | 0x^8 1x^7 1x^6 1x^5 0x^4 0x^3 0x^2 0x^1 0x^0 | 224 -// a^204 | 011011101 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 221 -// a^205 | 010100111 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 167 -// a^206 | 001010011 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 83 -// a^207 | 010100110 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 1x^2 1x^1 0x^0 | 166 -// a^208 | 001010001 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 0x^2 0x^1 1x^0 | 81 -// a^209 | 010100010 | 0x^8 1x^7 0x^6 1x^5 0x^4 0x^3 0x^2 1x^1 0x^0 | 162 -// a^210 | 001011001 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 89 -// a^211 | 010110010 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 178 -// a^212 | 001111001 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 121 -// a^213 | 011110010 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 242 -// a^214 | 011111001 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 0x^2 0x^1 1x^0 | 249 -// a^215 | 011101111 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 239 -// a^216 | 011000011 | 0x^8 1x^7 1x^6 0x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 195 -// a^217 | 010011011 | 0x^8 1x^7 0x^6 0x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 155 -// a^218 | 000101011 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 43 -// a^219 | 001010110 | 0x^8 0x^7 1x^6 0x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 86 -// a^220 | 010101100 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 172 -// a^221 | 001000101 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 1x^2 0x^1 1x^0 | 69 -// a^222 | 010001010 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 0x^2 1x^1 0x^0 | 138 -// a^223 | 000001001 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 9 -// a^224 | 000010010 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 0x^2 1x^1 0x^0 | 18 -// a^225 | 000100100 | 0x^8 0x^7 0x^6 1x^5 0x^4 0x^3 1x^2 0x^1 0x^0 | 36 -// a^226 | 001001000 | 0x^8 0x^7 1x^6 0x^5 0x^4 1x^3 0x^2 0x^1 0x^0 | 72 -// a^227 | 010010000 | 0x^8 1x^7 0x^6 0x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 144 -// a^228 | 000111101 | 0x^8 0x^7 0x^6 1x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 61 -// a^229 | 001111010 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 122 -// a^230 | 011110100 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 1x^2 0x^1 0x^0 | 244 -// a^231 | 011110101 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 1x^2 0x^1 1x^0 | 245 -// a^232 | 011110111 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 1x^2 1x^1 1x^0 | 247 -// a^233 | 011110011 | 0x^8 1x^7 1x^6 1x^5 1x^4 0x^3 0x^2 1x^1 1x^0 | 243 -// a^234 | 011111011 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 251 -// a^235 | 011101011 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 235 -// a^236 | 011001011 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 203 -// a^237 | 010001011 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 139 -// a^238 | 000001011 | 0x^8 0x^7 0x^6 0x^5 0x^4 1x^3 0x^2 1x^1 1x^0 | 11 -// a^239 | 000010110 | 0x^8 0x^7 0x^6 0x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 22 -// a^240 | 000101100 | 0x^8 0x^7 0x^6 1x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 44 -// a^241 | 001011000 | 0x^8 0x^7 1x^6 0x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 88 -// a^242 | 010110000 | 0x^8 1x^7 0x^6 1x^5 1x^4 0x^3 0x^2 0x^1 0x^0 | 176 -// a^243 | 001111101 | 0x^8 0x^7 1x^6 1x^5 1x^4 1x^3 1x^2 0x^1 1x^0 | 125 -// a^244 | 011111010 | 0x^8 1x^7 1x^6 1x^5 1x^4 1x^3 0x^2 1x^1 0x^0 | 250 -// a^245 | 011101001 | 0x^8 1x^7 1x^6 1x^5 0x^4 1x^3 0x^2 0x^1 1x^0 | 233 -// a^246 | 011001111 | 0x^8 1x^7 1x^6 0x^5 0x^4 1x^3 1x^2 1x^1 1x^0 | 207 -// a^247 | 010000011 | 0x^8 1x^7 0x^6 0x^5 0x^4 0x^3 0x^2 1x^1 1x^0 | 131 -// a^248 | 000011011 | 0x^8 0x^7 0x^6 0x^5 1x^4 1x^3 0x^2 1x^1 1x^0 | 27 -// a^249 | 000110110 | 0x^8 0x^7 0x^6 1x^5 1x^4 0x^3 1x^2 1x^1 0x^0 | 54 -// a^250 | 001101100 | 0x^8 0x^7 1x^6 1x^5 0x^4 1x^3 1x^2 0x^1 0x^0 | 108 -// a^251 | 011011000 | 0x^8 1x^7 1x^6 0x^5 1x^4 1x^3 0x^2 0x^1 0x^0 | 216 -// a^252 | 010101101 | 0x^8 1x^7 0x^6 1x^5 0x^4 1x^3 1x^2 0x^1 1x^0 | 173 -// a^253 | 001000111 | 0x^8 0x^7 1x^6 0x^5 0x^4 0x^3 1x^2 1x^1 1x^0 | 71 -// a^254 | 010001110 | 0x^8 1x^7 0x^6 0x^5 0x^4 1x^3 1x^2 1x^1 0x^0 | 142 -// a^255 | 000000001 | 0x^8 0x^7 0x^6 0x^5 0x^4 0x^3 0x^2 0x^1 1x^0 | 1 diff --git a/vendor/github.com/skip2/go-qrcode/reedsolomon/gf_poly.go b/vendor/github.com/skip2/go-qrcode/reedsolomon/gf_poly.go deleted file mode 100644 index 962f5454..00000000 --- a/vendor/github.com/skip2/go-qrcode/reedsolomon/gf_poly.go +++ /dev/null @@ -1,216 +0,0 @@ -// go-qrcode -// Copyright 2014 Tom Harwood - -package reedsolomon - -import ( - "fmt" - "log" - - bitset "github.com/skip2/go-qrcode/bitset" -) - -// gfPoly is a polynomial over GF(2^8). -type gfPoly struct { - // The ith value is the coefficient of the ith degree of x. - // term[0]*(x^0) + term[1]*(x^1) + term[2]*(x^2) ... - term []gfElement -} - -// newGFPolyFromData returns |data| as a polynomial over GF(2^8). -// -// Each data byte becomes the coefficient of an x term. -// -// For an n byte input the polynomial is: -// data[n-1]*(x^n-1) + data[n-2]*(x^n-2) ... + data[0]*(x^0). -func newGFPolyFromData(data *bitset.Bitset) gfPoly { - numTotalBytes := data.Len() / 8 - if data.Len()%8 != 0 { - numTotalBytes++ - } - - result := gfPoly{term: make([]gfElement, numTotalBytes)} - - i := numTotalBytes - 1 - for j := 0; j < data.Len(); j += 8 { - result.term[i] = gfElement(data.ByteAt(j)) - i-- - } - - return result -} - -// newGFPolyMonomial returns term*(x^degree). -func newGFPolyMonomial(term gfElement, degree int) gfPoly { - if term == gfZero { - return gfPoly{} - } - - result := gfPoly{term: make([]gfElement, degree+1)} - result.term[degree] = term - - return result -} - -func (e gfPoly) data(numTerms int) []byte { - result := make([]byte, numTerms) - - i := numTerms - len(e.term) - for j := len(e.term) - 1; j >= 0; j-- { - result[i] = byte(e.term[j]) - i++ - } - - return result -} - -// numTerms returns the number of -func (e gfPoly) numTerms() int { - return len(e.term) -} - -// gfPolyMultiply returns a * b. -func gfPolyMultiply(a, b gfPoly) gfPoly { - numATerms := a.numTerms() - numBTerms := b.numTerms() - - result := gfPoly{term: make([]gfElement, numATerms+numBTerms)} - - for i := 0; i < numATerms; i++ { - for j := 0; j < numBTerms; j++ { - if a.term[i] != 0 && b.term[j] != 0 { - monomial := gfPoly{term: make([]gfElement, i+j+1)} - monomial.term[i+j] = gfMultiply(a.term[i], b.term[j]) - - result = gfPolyAdd(result, monomial) - } - } - } - - return result.normalised() -} - -// gfPolyRemainder return the remainder of numerator / denominator. -func gfPolyRemainder(numerator, denominator gfPoly) gfPoly { - if denominator.equals(gfPoly{}) { - log.Panicln("Remainder by zero") - } - - remainder := numerator - - for remainder.numTerms() >= denominator.numTerms() { - degree := remainder.numTerms() - denominator.numTerms() - coefficient := gfDivide(remainder.term[remainder.numTerms()-1], - denominator.term[denominator.numTerms()-1]) - - divisor := gfPolyMultiply(denominator, - newGFPolyMonomial(coefficient, degree)) - - remainder = gfPolyAdd(remainder, divisor) - } - - return remainder.normalised() -} - -// gfPolyAdd returns a + b. -func gfPolyAdd(a, b gfPoly) gfPoly { - numATerms := a.numTerms() - numBTerms := b.numTerms() - - numTerms := numATerms - if numBTerms > numTerms { - numTerms = numBTerms - } - - result := gfPoly{term: make([]gfElement, numTerms)} - - for i := 0; i < numTerms; i++ { - switch { - case numATerms > i && numBTerms > i: - result.term[i] = gfAdd(a.term[i], b.term[i]) - case numATerms > i: - result.term[i] = a.term[i] - default: - result.term[i] = b.term[i] - } - } - - return result.normalised() -} - -func (e gfPoly) normalised() gfPoly { - numTerms := e.numTerms() - maxNonzeroTerm := numTerms - 1 - - for i := numTerms - 1; i >= 0; i-- { - if e.term[i] != 0 { - break - } - - maxNonzeroTerm = i - 1 - } - - if maxNonzeroTerm < 0 { - return gfPoly{} - } else if maxNonzeroTerm < numTerms-1 { - e.term = e.term[0 : maxNonzeroTerm+1] - } - - return e -} - -func (e gfPoly) string(useIndexForm bool) string { - var str string - numTerms := e.numTerms() - - for i := numTerms - 1; i >= 0; i-- { - if e.term[i] > 0 { - if len(str) > 0 { - str += " + " - } - - if !useIndexForm { - str += fmt.Sprintf("%dx^%d", e.term[i], i) - } else { - str += fmt.Sprintf("a^%dx^%d", gfLogTable[e.term[i]], i) - } - } - } - - if len(str) == 0 { - str = "0" - } - - return str -} - -// equals returns true if e == other. -func (e gfPoly) equals(other gfPoly) bool { - var minecPoly *gfPoly - var maxecPoly *gfPoly - - if e.numTerms() > other.numTerms() { - minecPoly = &other - maxecPoly = &e - } else { - minecPoly = &e - maxecPoly = &other - } - - numMinTerms := minecPoly.numTerms() - numMaxTerms := maxecPoly.numTerms() - - for i := 0; i < numMinTerms; i++ { - if e.term[i] != other.term[i] { - return false - } - } - - for i := numMinTerms; i < numMaxTerms; i++ { - if maxecPoly.term[i] != 0 { - return false - } - } - - return true -} diff --git a/vendor/github.com/skip2/go-qrcode/reedsolomon/reed_solomon.go b/vendor/github.com/skip2/go-qrcode/reedsolomon/reed_solomon.go deleted file mode 100644 index 561697b4..00000000 --- a/vendor/github.com/skip2/go-qrcode/reedsolomon/reed_solomon.go +++ /dev/null @@ -1,73 +0,0 @@ -// go-qrcode -// Copyright 2014 Tom Harwood - -// Package reedsolomon provides error correction encoding for QR Code 2005. -// -// QR Code 2005 uses a Reed-Solomon error correcting code to detect and correct -// errors encountered during decoding. -// -// The generated RS codes are systematic, and consist of the input data with -// error correction bytes appended. -package reedsolomon - -import ( - "log" - - bitset "github.com/skip2/go-qrcode/bitset" -) - -// Encode data for QR Code 2005 using the appropriate Reed-Solomon code. -// -// numECBytes is the number of error correction bytes to append, and is -// determined by the target QR Code's version and error correction level. -// -// ISO/IEC 18004 table 9 specifies the numECBytes required. e.g. a 1-L code has -// numECBytes=7. -func Encode(data *bitset.Bitset, numECBytes int) *bitset.Bitset { - // Create a polynomial representing |data|. - // - // The bytes are interpreted as the sequence of coefficients of a polynomial. - // The last byte's value becomes the x^0 coefficient, the second to last - // becomes the x^1 coefficient and so on. - ecpoly := newGFPolyFromData(data) - ecpoly = gfPolyMultiply(ecpoly, newGFPolyMonomial(gfOne, numECBytes)) - - // Pick the generator polynomial. - generator := rsGeneratorPoly(numECBytes) - - // Generate the error correction bytes. - remainder := gfPolyRemainder(ecpoly, generator) - - // Combine the data & error correcting bytes. - // The mathematically correct answer is: - // - // result := gfPolyAdd(ecpoly, remainder). - // - // The encoding used by QR Code 2005 is slightly different this result: To - // preserve the original |data| bit sequence exactly, the data and remainder - // are combined manually below. This ensures any most significant zero bits - // are preserved (and not optimised away). - result := bitset.Clone(data) - result.AppendBytes(remainder.data(numECBytes)) - - return result -} - -// rsGeneratorPoly returns the Reed-Solomon generator polynomial with |degree|. -// -// The generator polynomial is calculated as: -// (x + a^0)(x + a^1)...(x + a^degree-1) -func rsGeneratorPoly(degree int) gfPoly { - if degree < 2 { - log.Panic("degree < 2") - } - - generator := gfPoly{term: []gfElement{1}} - - for i := 0; i < degree; i++ { - nextPoly := gfPoly{term: []gfElement{gfExpTable[i], 1}} - generator = gfPolyMultiply(generator, nextPoly) - } - - return generator -} |